<span>Yes . the sugar will melt over time to form syrup *</span>
Answer:
A. the two genes on chromosome 1 are more than 50 mu apart.
Explanation:
Two or more genes present on the same chromosomes are the linked genes. Linked genes do not assort independently and do not exhibit crossing over. Therefore, the linkage of genes results in deviations from Mendel's law of independent assortment. However, if the linked genes are present far from each other on the same chromosome, they may exhibit crossing over.
The greater the distance between the linked genes, the higher are the chances of crossing over. Crossing over of linked genes would result in some of the progeny to have the new gene combinations as it occurs during an independent assortment of two genes. Therefore, Mendel observed an independent assortment of two genes present together on chromosome 1 since they were present far apart from each other (more than 50 mu apart).
Answer:
d. The normal pH of human blood is already in the alkaline range.
Explanation:
The blood has an average pH between 7.35 and 7.45. Also, in blood there are some natural buffers that allows to maintain this pH does not matter the kind of food or substances that enter to our body.
If for any process the pH decreases a little bit, the body starts a process to recover the natural pH of the blood.
Oceanic-continental convergence occurs when an oceanic plate and a continental plate converge. They are pushed together and the oceanic plate is forced to go under the continental plate. So based on the diagram, this convergence occurred in letter B.
Oceanic-oceanic convergence occurs when two oceanic plates collide into one another. The oceanic plate that is older, denser and/or colder will be the plate that will go under the other. It will be forced down into the mantle. So in our diagram, this occurs in letter A.
Continental-continental convergence occurs when two continental plates converge. In this case, the plates push up against each other and create mountain ranges. Unlike the other two, they do not sink down, the movement is upwards. This occurs in the area C of your diagram.
Answer:
The correct answer would be -
Membrane A - Hypotonic solution - the movement of water towards inside the cell
Membrane B - Isotonic soltion - there will be no movement of water
Membrane C - Hyertonic solution - the movement of water towards outside of the cell
Explanation:
This experiment deals with tonicity as this solution will affect the tonicity of the egg membrane. In membrane A there are more solutes inside the cell than outside the cell so it is hypotonic solution so the movement of water will be towards inside the cell.
In membrane B the solutes are equal in both sides so there will be no movement as its isotonic condition while in membrane C the solution is in hypertonic situation as the solutes are more outside than inside.
Thus, the behavior of the membranes are-
Membrane A - Hypotonic solution - the movement of water towards inside the cell
Membrane B - Isotonic soltion - there will be no movement of water
Membrane C - Hyertonic solution - the movement of water towards outside of the cell