The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time
The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.
Distance = 10 * 1.06
Distance = 10.6 meters
The boat should be 10.6 meters away horizontally from the point of release.
a) 6.25 rad/s
The law of conservation of angular momentum states that the angular momentum must be conserved.
The angular momentum is given by:

where
I is the moment of inertia
is the angular speed
Since the angular momentum must be conserved, we can write

where we have
is the initial moment of inertia
is the initial angular speed
is the final moment of inertia
is the final angular speed
Solving for
, we find

b) 28.1 J and 35.2 J
The rotational kinetic energy is given by

where
I is the moment of inertia
is the angular speed
Applying the formula, we have:
- Initial kinetic energy:

- Final kinetic energy:

Explanation:
the question is unanswerable
Answer:
The total number of small cylinder = 7.
Explanation:
Lets take
Radius of the large cylinder = R
length = L
L = 10 R
The total area A = 2 π R² + π R L
The length of the small cylinder = l
The number of small cylinder = n
L = n l
The total area of small cylinders
A'=n (2 π R² + π R l)
As we know that emissive power given as
P = A ε σ T⁴
For large cylinder
P = A ε σ T⁴ -----------1
For small cylinders
P'=A' ε σ T⁴ ------2
From 1 and 2
Given that
P'= 2 P
A' ε σ T⁴ =2 A ε σ T⁴
A'=2 A (All others are constant)
n (2 π R² + π R l) =(2 2 π R² + π R L)
n (2 R² + R l) = (2 R² + R L)

L = 10 R


2 n +10 = 2 x 12
2 n +10 = 24
2 n = 24 -10
2 n = 14
n = 7
The total number of small cylinder = 7.
<span>A solution is oversaturated with solute. The thing that could be done to decrease the oversaturation is to add more solvent in order to decrease the concentration of the solute. You can also increase the temperature to increase solubility of the solute. Hope this answers the question.</span>