answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anastassius [24]
2 years ago
11

A solution is oversaturated with solute. which could be done to decrease the oversaturation?

Physics
2 answers:
Rzqust [24]2 years ago
5 0

Answer: The correct awnser is B add more solute

Explanation:

Grace [21]2 years ago
4 0
<span>A solution is oversaturated with solute. The thing that could be done to decrease the oversaturation is to add more solvent in order to decrease the concentration of the solute. You can also increase the temperature to increase solubility of the solute. Hope this answers the question.</span>
You might be interested in
A classical estimate of the vibrational frequency is ff = 7.0×10137.0×1013 HzHz. The mass of a hydrogen atom differs little from
vlada-n [284]

Answer:

The force constant of the spring is 317.8 N/m.

Explanation:

Given that,

Frequency f=7.0\times10^{13}\ Hz

We need to calculate the reduced mass

Using formula of reduced mass

\mu=\dfrac{m_{H}m_{I}}{m_{H}+m_{I}}

Where, m_{H}= atomic mass of H

m_{I}= atomic mass of I

Put the value into the formula

\mu=\dfrac{1\times126.9}{1+126.9}

\mu=0.99\ u

\mu=0.99\times1.66\times10^{-27}\ Kg

\mu=1.643\times10^{-27}\ kg

We need to calculate the force constant of the spring

Using formula of frequency

f=\dfrac{1}{2\pi}\times\sqrt{\dfrac{k}{\mu}}

k=f^2\times 4\pi^2\times\mu

Put the value into the formula

k=(7.0\times10^{13})^2\times4\pi^2\times1.643\times10^{-27}

k=317.8\ N/m

Hence, The force constant of the spring is 317.8 N/m.

0 0
2 years ago
A boy is pulling a load of 150N with a string inclined at an angle 30 to the horizontal if the tension of string is 105N the for
Lorico [155]

The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>

Why?

Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.

We can calculate the vertical force using the following formula:

VerticalForce=Force*Sin(30\° )=(BoysForce-StringForce)*\frac{1}{2}\\\\VerticalForce=(150N-105N)*\frac{1}{2}=VerticalForce=45N*\frac{1}{2}=22.5N

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>

Have a nice day!

8 0
2 years ago
A huge (essentially infinite) horizontal nonconducting sheet 10.0 cm thick has charge uniformly spread over both faces. The uppe
Nonamiya [84]

Answer:

6.78 X 10³ N/C

Explanation:

Electric field near a charged infinite plate

=  surface charge density / 2ε₀

Field will be perpendicular to the surface of the plate for both the charge density and direction of field will be same so they will add up.

Field due to charge density of +95.0 nC/m2

E₁ = 95 x 10⁻⁹ / 2 ε₀

Field due to charge density of -25.0 nC/m2

E₂ = 25 x 10⁻⁹ /  2ε₀

Total field

E = E₁ + E₂

= 95 x 10⁻⁹ / 2 ε₀ + 25 x 10⁻⁹ /  2ε₀

= 6.78 X 10³ N/C

4 0
2 years ago
You set a tuning fork into vibration at a frequency of 723 Hz and then drop it off the roof of the Physics building where the ac
zaharov [31]

Answer:

Explanation:

Given

Original Frequency f=723\ Hz

apparent Frequency f'=697\ Hz

There is change in frequency whenever source move relative to the observer.

From Doppler effect we can write as

f'=f\cdot \frac{v-v_o}{v+v_s}

where  

f'=apparent frequency  

v=velocity of sound in the given media

v_s=velocity of source

v_0=velocity of observer  

here v_0=0

697=723\cdot (\frac{343-0}{343+v_s})

v_s=(\frac{f}{f'}-1)v

v_s=(\frac{723}{697}-1)\cdot 343

v_s=12.79\approx 12.8\ m/s

i.e.fork acquired a velocity of 12.8 m/s

distance traveled by fork is given by

v^2-u^2=2as

where v=final velocity

u=initial velocity

a=acceleration

s=displacement

v_s^2-0=2\times 9.8\times s

s=\frac{12.8^2}{2\times 9.8}

s=8.35\ m

                                       

5 0
2 years ago
Adam is teeing off on hole number two. The hole is 390 yards away. It is a par four hole. What club should he use to tee off? Ex
kkurt [141]

Answer:

A driver.

Explanation:

Using a driver while at least 350 yds away is better than using a iron, because it will be a waste of the par 4 as it is not as powerful as the driver.

3 0
2 years ago
Other questions:
  • Part a consider another special case in which the inclined plane is vertical (θ=π/2). in this case, for what value of m1 would t
    7·1 answer
  • An 80 kg skateboarder moving at 3 m/s pushes off with her back foot to move faster. If her velocity increases to 5 m/s, what is
    14·2 answers
  • Irina finds an unlabeled box of fine needles, and wants to determine how thick they are. A standard ruler will not do the job, a
    9·1 answer
  • Which of the following is an example of convection
    9·2 answers
  • Consider a finite square-well potential well of width 3.1 ✕ 10-15 m that contains a particle of mass 1.8 GeV/c2. How deep does t
    9·1 answer
  • A bored student makes a poor life decision and decides to go do donuts in a school parking lot. The student jumps into his/her 1
    8·1 answer
  • A boat of mass 250 kg is coasting, with its engine in neutral, through the water at speed 1.00 m/s when it starts to rain with i
    10·1 answer
  • A particle is located on the x axis at x = 2.0 m from the origin. A force of 25 N, directed 30° above the x axis in the x-y plan
    8·1 answer
  • BEST ANSWER GETS BRAINLIEST!
    13·1 answer
  • A 25-coil spring with a spring constant of 350 N/m is cut into five equal springs with five coils each. What is the spring const
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!