Answer:
The force constant of the spring is 317.8 N/m.
Explanation:
Given that,
Frequency 
We need to calculate the reduced mass
Using formula of reduced mass
Where,
= atomic mass of H
= atomic mass of I
Put the value into the formula




We need to calculate the force constant of the spring
Using formula of frequency


Put the value into the formula


Hence, The force constant of the spring is 317.8 N/m.
The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
Answer:
6.78 X 10³ N/C
Explanation:
Electric field near a charged infinite plate
= surface charge density / 2ε₀
Field will be perpendicular to the surface of the plate for both the charge density and direction of field will be same so they will add up.
Field due to charge density of +95.0 nC/m2
E₁ = 95 x 10⁻⁹ / 2 ε₀
Field due to charge density of -25.0 nC/m2
E₂ = 25 x 10⁻⁹ / 2ε₀
Total field
E = E₁ + E₂
= 95 x 10⁻⁹ / 2 ε₀ + 25 x 10⁻⁹ / 2ε₀
= 6.78 X 10³ N/C
Answer:
Explanation:
Given
Original Frequency 
apparent Frequency 
There is change in frequency whenever source move relative to the observer.
From Doppler effect we can write as

where
apparent frequency
v=velocity of sound in the given media
velocity of source
velocity of observer
here 




i.e.fork acquired a velocity of 
distance traveled by fork is given by

where v=final velocity
u=initial velocity
a=acceleration
s=displacement



Answer:
A driver.
Explanation:
Using a driver while at least 350 yds away is better than using a iron, because it will be a waste of the par 4 as it is not as powerful as the driver.