answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
2 years ago
15

Submit Quiz

Physics
1 answer:
kkurt [141]2 years ago
7 0

Explanation:

the question is unanswerable

You might be interested in
A 2 kg stone moves with a speed of 1 m/s. A second 2 kg stone is moving twice as fast. Compare their kinetic energies.
alekssr [168]
D
is the answer
Well it should be
5 0
2 years ago
Read 2 more answers
Calculate the average velocity in m/y of a tectonic plate that has travelled 9000 km to the south in 60 million years
Gekata [30.6K]
<span>The distance covered by the tectonic plate, in meters, is
</span>d=9000km=9\cdot 10^6 m<span>
 The time taken for the tectonic plate to cover this distance is equal to
</span>t=60 mil.y=60 \cdot 10^6 y<span>
Therefore, the average velocity of the tectonic plate is the ratio between the distance covered and the time taken: 
</span>v= \frac{S}{t} = \frac{9\cdot 10^6m}{60 \cdot 10^6y} =0.15 m/y.<span>
</span>
8 0
2 years ago
Block A, mass 250 g , sits on top of block B, mass 2.0 kg . The coefficients of static and kinetic friction between blocks A and
masha68 [24]

Answer:

  F = 69.3 N

Explanation:

For this exercise we use Newton's second law, remembering that the static friction force increases up to a maximum value given by

               fr = μ N

We define a reference system parallel to the floor

block B  ( lower)

Y axis  

            N - W₁-W₂ = 0

            N = W₂ + W₂

            N = (M + m) g

X axis

              F -fr = M a

for block A (upper)

X axis

              fr = m a                 (2)

so that the blocks do not slide, the acceleration in both must be the same.

Let's solve the system by adding the two equations

             F = (M + m) a          (3)

             a =\frac{F}{ M+m}

the friction force has the formula

            fr = μ N

             fr = μ (M + m) g

let's calculate

            fr = 0.34 (2.0 + 0.250) 9.8

            fr = 7.7 N

we substitute in equation 2

             fr = m a

             a = fr / m

             a = 7.7 / 0.250

             a = 30.8 m / s²

we substitute in equation 3

             F = (2.0 + 0.250) 30.8

             F = 69.3 N

5 0
2 years ago
Draw the vector C⃗ =1.5A⃗ −3B⃗ . The length and orientation of the vector will be graded. The location of the vector is not impo
Nutka1998 [239]
I made the drawing in the attached file.

I included two figures.

The upper figure shows the effect of:

- multiplying vector A times 1.5.
 It is drawn in red with dotted line.

- multiplying vector B times - 3 .
It is drawn in purple with dotted line.

In the lower figure you have the resultant vector: C = 1.5A - 3B.

The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.

Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.

The resultant arrow is the vector C and it is drawn in black dotted line.
 
Download pdf
7 0
2 years ago
Read 2 more answers
A 1000-kg car is slowly picking up speed as it goes around a horizontal curve whose radius is 100 m. The coefficient of static f
Snezhnost [94]

Answer:

18.5 m/s

Explanation:

On a horizontal curve, the frictional force provides the centripetal force that keeps the car in circular motion:

\mu mg = m\frac{v^2}{r}

where

\mu is the coefficient of static friction between the tires and the road

m is the mass of the car

g is the gravitational acceleration

v is the speed of the car

r is the radius of the curve

Re-arranging the equation,

v=\sqrt{\mu gr}

And by substituting the data of the problem, we find the speed at which the car begins to skid:

v=\sqrt{(0.350)(9.8 m/s^2)(100 m)}=18.5 m/s

7 0
2 years ago
Read 2 more answers
Other questions:
  • What is the standard metric unit of power
    11·1 answer
  • An electron is in a vacuum near the surface of the Earth. Where should a second electron be placed so that the net force on the
    9·1 answer
  • Now assume that the boat is subject to a drag force fd due to water resistance. is the component of the total momentum of the sy
    15·2 answers
  • How did Newton use creativity and logic in his approach to investigating light?
    15·2 answers
  • Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a
    10·2 answers
  • An airplane traveling 245 m/s east experienced turbulence, so the pilot decided to slow down to 230 m/s. It took the pilot 7 sec
    6·2 answers
  • A ball is kicked horizontally at 8.0 m/s from a cliff 80m high. What is the acceleration of the ball in the vertical
    13·1 answer
  • A football player kicks a 0.41-kg football initially at rest; and the ball flies through the air. If the kicker's foot was in co
    5·1 answer
  • three point charges are positioned on the x-axis 64 uc at x=ocm , 80uc at x=25cm, and -160 uc at x=50 cm. what is the magnitude
    11·1 answer
  • The index of refraction for silicate flint glass is 1.66 for violet light that has a wavelength in air equal to 400 nm and 1.61
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!