Answer:
The mass of sodium that reacted is 230 grams
Explanation:
The balance equation of the reaction is first written .
sodium = Na
Chlorine = Cl2
sodium chloride = NaCl
2Na + Cl2 → 2NaCl
from the balance equation we calculate the molar mass involve in the reaction
Molar mass of sodium from the equation = 23(2) = 46 g
molar mass of sodium chloride from the eqaution = 23 × 2 + 35.5 × 2 = 46 + 71 = 117 g
If 46g of sodium is in 117 g of sodium chloride
? gram will be in 585 g of sodium chloride
cross multiply
46 × 585/117 = 26910/117 = 230 g
The mass of sodium that reacted is 230 grams
Answer:


Explanation:
Hello,
In this case, we can compute the mole fraction of benzene by using the following formula:

Whereas n accounts for the moles of each substance, thus, we compute them by using molar mass of benzene and cyclohexane:

Thus, we compute the mole fraction:

Next, for the molality, we define it as:

Whereas we also use the moles of benzene but rather than the moles of cyclohexane, its mass in kilograms (0.08074 kg), thus, we obtain:

Or just 0.990 m in molal units (mol/kg).
Best regards.
There’s no question for me to answer ?
Answer:
Amino >Methoxy > Acetamido
Explanation:
Bromination is of aromatic ring is an electrophilic substitution reaction. The attached functional group to the benzene ring activates or deactivate the aromatic ring towards electrophilic substitution reaction.
The functional group which donates electron to the benzene ring through inductive effect or resonance effect activates the ring towards electrophilic substitution reaction.
The functional group which withdraws electron to the benzene ring through inductive effect or resonance effect deactivates the ring towards electrophilic substitution reaction.
Among given, methoxy and amino are electron donating group. Amino group are stronger electron donating group than methoxy group. Acetamido group because of presence of carbonyl group becomes electron withdrawing group.
Therefore, decreasing order will be as follows:
Amino >Methoxy > Acetamido
Answer:
The correct option is: B) H₂0 and OH⁻ as a conjugate pair
Explanation:
According to Brønsted-Lowry theory, the<u> </u><u>acids</u><u> are the chemical substances that form a conjugate base by donating a proton</u> and <u>bases</u><u> are the chemical substances that form conjugate acid by accepting a proton.</u>
In the given chemical reaction: PO₄³⁻(aq) + H₂O(l) ⇄ HPO₄²⁻(aq) + OH⁻(aq)
<u>According to Brønsted-Lowry theory, PO₄³⁻ and OH⁻ are bases. Whereas, H₂O and HPO₄²⁻ are acids.</u>
<u>Also, PO₄³⁻ and HPO₄²⁻ are the conjugate acid-base pair; and H₂O and OH⁻ are the conjugate acid-base pair.</u>