Answer:
Ethynylcyclopropane is the stable isomer for given alkyne.
Explanation:
In order to solve this problem we will first calculate the number of Hydrogen atoms. The general formula for alkynes is as,
CₙH₂ₙ₋₂
Putting value on n = 5,
C₅H₂.₅₋₂
C₅H₈
Also, the statement states that the compound contains one ring therefore, we will subtract 2 hydrogen atoms from the above formula i.e.
C₅H₈ ------------(-2 H) ----------> C₅H₆
Hence, the molecular formula for given compound is C₅H₆
Below, 4 different isomers with molecular formula C₅H₆ are attached.
The first compound i.e. ethynylcyclopropane is stable. As we know that alkynes are sp hybridized. The angle between C-C-H in alkynes is 180°. Hence, in this structure it can be seen that the alkyne part is linear and also the cyclopropane part is a well known moiety.
Compounds 3-ethylcycloprop-1-yne, <u>cyclopentyne </u>and 3-methylcyclobut-1-yne are highly unstable. The main reason for the instability is the presence of triple bond in three, five and four membered ring. As the alkynes are linear but the C-C-H bond in these compound is less than 180° which will make them highly unstable.
D has a total of four significant figures.
Answer:
Molarity for the sulfuric acid is 0.622 M
Explanation:
When we neutralize an acid with a base, molarity of both . both volume are the same. The formula is:
M acid . volume of acid = M base . volume of base
M acid = unknown
Volume of acid = 17 mL
Volume of base = 45 mL
M base = 0.235 M
Therefore, we replace: M acid . 17 mL = 0.235 M . 45 mL
M acid = (0.235 M . 45 mL) / 17 mL
M acid = 0.622 M
The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
10
Explanation:
pH is defined as the negative logarithm of the concentration of hydrogen ions.
Thus,
pH = - log [H⁺]
Thus, from the formula, more the concentration of the hydrogen ions or more the acidic the solution is, the less is the pH value of the solution.
Thus, solution with pH = 3 will be more acidic than solution with pH =4
Thus, concentration of the [H⁺] when pH =3
3 = - log [H⁺]
[H⁺] = 10⁻³ M
For pH = 4, [H⁺] = 10⁻⁴ M
<u>hence, pH = 3 is 10 times more acidic than pH = 4</u>