Answer:
A polysaccharide (n) can be formed by linking several monosaccharides through glycosidic linkages.
Explanation:
Polysaccharides are carbohydrates or complex carbohydrates, where monosaccharides join with glucosidic bonds to form a more complex structure that would be the polysaccharide.
An example of a polysaccharide is starch, or glycogen.
Starch is found in many foods such as potatoes or rice, and glycogen is a form of energy reserve of our organism housed in muscles and liver to fulfill locomotion, physical activity, and other activities that consist of glycolysis.
Polysaccharides are degraded in our body by different stages, and several enzymes unlike monosoccharides or disaccharides, since they have more unions and a more complex structure to disarm in our body and thus assimilate it.
Polysaccharides are also part of animal structures, such as insect shells or nutritional sources, among others.
For this problem, we use the formula for sensible heat which is written below:
Q= mCpΔT
where Q is the energy
Cp is the specific heat capacity
ΔT is the temperature difference
Q = (55.5 g)(<span>0.214 cal/g</span>·°C)(48.6°C- 23°C)
<em>Q = 304.05 cal</em>
Answer:
A titration
Explanation:
A common example of a titration is when we have an acid of unknown concentration, so we add a known volume of a base of known concentration. This process lets us determine the concentration of the acid.
By definition, a titration is a quantitative analysis, as we determine how much of an analyte is there in a sample. However, <u>there are quantitative analyzes which are not titrations</u>. This is why the most appropiate answer is<em> a titration</em>.
Answer : The volume of solution will be 2.96 liters.
Explanation :
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

In this question, the solute is NaF.
Now put all the given values in this formula, we get:



Therefore, the volume of solution will be 2.96 liters.