Answer:
In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer
In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away
Explanation:
This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,
n₁ sin θ₁ = n₂ sin θ₂
where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.
In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer
1 sin θ₁ = 1.33 sin θ₂
θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)
In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away
Answer:
99.95%
Explanation:
A double pulsar system named PSR J0737-3039A/B in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.
A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.
Answer:
Given that
V= 0.06 m³
Cv= 2.5 R= 5/2 R
T₁=500 K
P₁=1 bar
Heat addition = 15000 J
We know that heat addition at constant volume process ( rigid vessel ) given as
Q = n Cv ΔT
We know that
P V = n R T
n=PV/RT
n= (100 x 0.06)(500 x 8.314)
n=1.443 mol
So
Q = n Cv ΔT
15000 = 1.433 x 2.5 x 8.314 ( T₂-500)
T₂=1000.12 K
We know that at constant volume process
P₂/P₁=T₂/T₁
P₂/1 = 1000.21/500
P₂= 2 bar
Entropy change given as

Cp-Cv= R
Cp=7/2 R
Now by putting the values


a)ΔS= 20.79 J/K
b)
If the process is adiabatic it means that heat transfer is zero.
So
ΔS= 20.79 J/K
We know that

Process is adiabatic




First, we get the difference between the kinetic energies such that,
difference = (220J - 120J)
difference = 100 J
The difference in kinetic energy is the equivalent of the potential energy which is calculated through the equation,
PE = mgh
To calculate for the height, we derive the equation in a form,
h = PE/mg
The product of the mass and acceleration due to gravity is the weight.
h = (100 J) / (5 N)
h = 20 m
<em>Hence, the answer is 20 m. </em>