At constant pressure, temperature is directly proportional to the volume and vise versa. The formula will be
V1/T1 = V2/T2
where V1 and T1 are the initial volume and temperature and V2 and T2 are the final volume and temperature. The temperature is in Kelvin and to convert Celsius to Kelvin add 273.
so, 6.24L/298 = V2/328
=6.87L
The reaction formula of this is C3H8 + 5O2 --> 3CO2 + 4H2O. The ratio of mole number of C3H8 and O2 is 1:5. 0.025g equals to 0.025/44.1=0.00057 mole. So the mass of O2 is 0.00057*5*32=0.0912 g.
Answer is "B - 700,000".<span>
<span>Kinetic energy of a single particle (atom or molecule)<span> is directly proportional to its
temperature according to the following equation.</span></span>
KE = (3kT)/2
<span>Where </span>KE<span> is the
kinetic energy of a single atom/molecule (</span>J<span>), </span>k<span> is the Boltzmann
constant (</span>1.381 × 10</span>⁻²³ J/K<span>) and </span>T<span> is the temperature (</span>K<span>) </span><span>
When temperature increases, then the kinetic
energy increases.
<span>If kinetic
energy of atoms increases, then there will be more motions which create many
collisions.</span></span>
Elements present in group 18 are known as noble gases. The outermost shell of these elements are completely filled.
18 is the answer
When the amount of heat gained = the amount of heat loss
so, M*C*ΔTloses = M*C* ΔT gained
when here the water is gained heat as the Ti = 25°C and Tf= 28°C so it gains more heat.
∴( M * C * ΔT )W = (M*C*ΔT) Al
when Mw is the mass of water = 100 g
and C the specific heat capacity of water = 4.18
and ΔT the change in temperature for water= 28-25 = 3 ° C
and ΔT the change in temperature for Al = 100-28= 72°C
and M Al is the mass of Al block
C is the specific heat capacity of the block = 0.9
so by substitution:
100 g * 4.18*3 = M Al * 0.9*72
∴ the mass of Al block is = 100 g *4.18 / 0.9*72
= 19.35 g