Step-by-step explanation:
I have no idea what you are asking to do lol
Answer:
<em>Mean of the sample = 27.83</em>
<em> The variance of the the sample = 106.96</em>
<em> </em><em>Standard deviation of the sample = 10.34</em>
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given random sample of six employees
x 26 32 29 16 45 19
mean of the sample

Mean of the given data = 27.83
<u>Step(ii):-</u>
<u>Given data</u>
x : 26 32 29 16 45 19
x - x⁻ : -1.83 4.17 1.17 -11.83 17.17 -8.83
(x - x⁻)² : 3.3489 17.3889 1.3689 139.9489 294.80 77.9689
∑ (x-x⁻)² = 534.8245
Given sample size 'n' =6
The variance of given data
S² = ∑(x-x⁻)² / n-1

The variance of the given sample = 106.9649
<u> Step(iii):-</u>
Standard deviation of the given data

Standard deviation of the sample = 10.3423
Answer:
His 95% confidence interval is (0.065, 0.155).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

His 95% confidence interval is (0.065, 0.155).
Answer: The answer is (D) Reflection across the line y = -x.
Step-by-step explanation: In figure given in the question, we can see two triangles, ΔABC and ΔA'B'C' where the second triangle is the result of transformation from the first one.
(A) If we rotate ΔABC 180° counterclockwise about the origin, then the image will coincide with ΔA'B'C'. So, this transformation can take place here.
(B) If we reflect ΔABC across the origin, then also the image will coincide with ΔA'B'C' and so this transformation can also take place.
(C) If we rotate ΔABC through 180° clockwise about the origin, the we will see the image will be same as ΔA'B'C'. Hence, this transformation can also take place.
(D) Finally, if we reflect ΔABC across the line y = -x, the the image formed will be different from ΔA'B'C', in fact, it is ΔA'D'E', as shown in the attached figure. So, this transformation can not take place here.
Thus, the correct option is (D).