2C3H6 (g) + 2NH3 (g) + 3O2 (G) -> 2C3H3N (g) + 6H2O (g)
First off.. not a chem board.. but n e way.
This is a limiting reagent problem.
set it up as a DA problem.(Dimension Analysis)
Start with what you want.
you want Grams of acrylonitrile (C3H3N)
so start with that (Using ACL in place of Acrylonitrile.. just for ease of typing)
(g) = (53 g of ACL/1mol ACL) (2 mols ACL/2 mol C3H6)/ (1mol C3H6/42 grams) (15.0 grams)
solve that you wiill get grams of Acrylonitrile created by 15 grams oc C3H6 = 18.9g
Same setup for the two other reactants.
so i did it and for
oxygen I got 11.04 grams
and for Ammonia i got 15.29 grams
So the most you can make is 11.04 grams because if you have ot make any more .. you will have to get more O2 .. but since you have only 10 grams of it .. that is the most u can make in this reaction.
Both the other reactants are in excess.
rate brainliest pls
Answer:
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Explanation:
Let's consider the unbalanced equation that occurs when phosphoric acid reacts with barium hydroxide to form water and barium phosphate. This is a neutralization reaction.
H₃PO₄(aq) + Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
We will balance it using the trial and error method.
First, we will balance Ba atoms by multiplying Ba(OH)₂ by 3 and P atoms by multiplying H₃PO₄ by 2.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
Finally, we will get the balanced equation by multiplying H₂O by 6.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Answer:
Removal of Third Electron
Explanation:
a major jump is required to remove the third electron. In general, successive ionization energies always increase because each subsequent electron is being pulled away from an increasingly more positive ion.
Ionization energy increases from bottom to top within a group, and increases from left to right within a period.