Answer:
see explanation below
Explanation:
To do this exercise, we need to use the following expression:
P = nRT/V
This is the equation for an ideal gas. so, we have the temperature of 22 °C, R is the gas constant which is 0.082 L atm / mol K, V is the volume in this case, 5 L, and n is the moles, which we do not have, but we can calculate it.
For the case of the oxygen (AW = 16 g/mol):
n = 30.6 / 32 = 0.956 moles
For the case of helium (AW = 4 g/mol)_
n = 15.2 / 4 = 3.8 moles
Now that we have the moles, let's calculate the pressures:
P1 = 0.956 * 0.082 * 295 / 5
P1 = 4.63 atm
P2 = 3.8 * 0.082 * 295 / 5
P2 = 18.38 atm
Finally the total pressure:
Pt = 4.63 + 18.38
Pt = 23.01 atm
Explanation:
The - 3 degree C( carbon atom) 2p atomic orbital + methyl C-H sigma molecular orbital because one C-H bond has to dissolve its bond and provide the H that is sigma molecular orbital and the carbonation is type 3 degree sp2 carbon.
Hyperconjugation is the stabilizing effect arising from the electrons ' engagement in a π-bond (usually C-H or C-C) with a neighboring empty or partly filled p-orbital or π-orbital to provide an expanded molecular orbital that enhances system stability.
Answer: The oxidation state of selenium in SeO3 is +6
Explanation:
SeO3 is the chemical formula for selenium trioxide.
- The oxidation state of SeO3 = 0 (since it is stable and with no charge)
- the oxidation number of oxygen (O) IN SeO3 is -2
- the oxidation state of selenium in SeO3 = Z (let unknown value be Z)
Hence, SeO3 = 0
Z + (-2 x 3) = 0
Z + (-6) = 0
Z - 6 = 0
Z = 0 + 6
Z = +6
Thus, the oxidation state of selenium in SeO3 is +6
NiCl₂ commonly forms a green aqueous solution.