1- we know that 4-tert-butylcyclohexanol is more polar than 4-tert-butylcyclohexanone (where the alcohols in general are more polar than ketons due to the hydrogen bond)
2- during separation via chromatography (in this case) the more polar solute will dissolve easily in polar solvents, where like dissolves like.
3- So, 4-tert-butylcyclohexanol will dissolve in ethyl acetete (which is polar) more than 4-tert-butylcyclohexanone, i.e, will have much higher Rf.
4- And also 4-tert-butylcyclohexanone will dissolve in dichloromethane (which lower in polarity than ethyl acetate) more than 4-tert-butylhexanol, i.e, will have much higher Rf
<h3>The average atomic mass of Iodine : 126.86 amu</h3><h3>Further explanation</h3>
Given
80% 127I, 17% 126I, and 3% 128I.
Required
The average atomic mass
Solution
The elements in nature have several types of isotopes
Atomic mass is the average atomic mass of all its isotopes
Mass atom X = mass isotope 1 . % + mass isotope 2.% + ... mass isotope n.%
Atomic mass of Iodine = 0.8 x 127 + 0.17 x 126 + 0.03 x 128
Atomic mass of Iodine = 101.6 + 21.42 + 3.84
Atomic mass of Iodine = 126.86 amu
Answer:

Explanation:
Hello,
In this case, we apply the Gay-Lussac's law which allows us to understand the pressure-temperature behavior as a directly proportional relationship:

Thus, we solve for the final pressure P2 to obtain it as shown below:

Hence, we notice that the temperature doubles as well as the pressure.
Best regards.
<span>If the aqueous solution is 34% Licl then it is 100 - 34% water = 66%
From the calculation we've found out that it is 66% water. Then we need to find the weight from a 250 g solution.
66/100 * 250 = 165g
Hence it is 165g</span>
When solving for the mass of a compound when you’re given the number of moles present, you need to know the molar mass (how many grams there are in a mole of that compound).
In this case, we can make the following equation:
3.00(14.01 + 2(16.00))
In Nitrogen, the molar mass is 14.01 grams per mole, and Oxygen is 16.01 grams per mole.
However, because there are 2 oxygen atoms present per molecule, you must multiply it by two in order to solve for the molar mass.
Anyway:
3.00(14.01 + 2(16.00))
Simplify:
3.00(14.01 + 32.00)
3.00(46.01)
Multiply:
3.00(46.01) = 138.03
3.00 moles of NO2 has a mass of 138.03 grams.
-T.B.