Reactions of Ethyl-3-pentenoate with all given reagents are given below.
Reaction with H₂ / Pd:
The non-polar double bond present in Ethyl-3-pentenoate is reduced to saturated chain. This reagent can not reduce the carbonyl group.
Reaction with NaBH₄: Sodium Borohydride is a weak reducing agent at compared to LiAlH₄. It can only reduce aldehydes and Ketones to corresponding alcohols.
Reaction with LiAlH₄: Lithium Aluminium hydride is a strong reducing agent. It can reduce all types of carbonyl compounds to corresponding alcohols, But, it can not reduce non-polar double bonds like alkenes and alkynes.
Result: The correct answer is
Option-A (Highlighted RED below).
The concentration of AlCl3 solution if 150 ml of the solution contains 550 mg of cl- ion is 0.0344 M
calculation
concentration = moles /volume in liters
volume in liters = 150 /1000= 0.15 L
number of moles calculation
write the equation for dissociation of Al2Cl3
that is AlCl3 ⇔ Al^3+ + 3 Cl ^-
find the moles of Cl^- formed
moles =mass/molar mass
mass in grams= 550/ 1000 =0.55 grams
molar mass of Cl^- =35.5 g/mol
moles is therefore= 0.55/35.5 =0.0155 moles
by use of mole ration betweem AlCl3 to Cl^- which is 1:3 the moles of AlCl3 is =0.0155 x 1/3= 5.167 x10^-3 moles
concentration of AlCl3 is therefore= 5.167 x10^-3/ 0.15 =0.0344 M
Explanation:
Formation of crystals starts with formation of ions. After the formation of ions the bond formation takes place between the ions.
Bond making between the ions give rise to formation of cubic unit cell by placing them in such a fashion that it forms a shape of a cube.
These cube are then arranged in a repeated pattern which ultimately leads to the formation of crystals.
Hence, the order of steps:
Step 1 : Formation of ions
Step 2: Formation of ionic bonds
Step 3: Formation of cubes
Step 4: Formation of crystals
Answer:
0.12 mol KCl
Explanation:
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
15 g x mol
x g KCl = 15 g KClO3 x[ (1 mol KClO3)/ (122.5 g KClO3) ] x [(2 mol KCl)/ (2 mol KClO3)]
x g KCl = 0.12 mol KCl