Answer:
i. n = 5
ii. ΔE = 7.61 ×
KJ/mole
Explanation:
1. ΔE = (1/λ) = -2.178 ×
(
-
)
(1/434 ×
) = -2.178 ×
(
)
⇒ 434 ×
= (1/-2.178 ×
)
But,
= 2
434 ×
= (1/2.178 ×
)
434 ×
× 2.178 ×
= 
⇒
= 5
Therefore, the initial energy level where transition occurred is from 5.
2. ΔE = hf
= (hc) ÷ λ
= (6.626 × 10−34 × 3.0 ×
) ÷ (434 ×
)
= (1.9878 ×
) ÷ (434 ×
)
= 4.58 ×
J
= 4.58 ×
KJ
But 1 mole = 6.02×
, then;
energy in KJ/mole = (4.58 ×
KJ) ÷ (6.02×
)
= 7.61 ×
KJ/mole
Easy stoichiometry conversion :)
So, for stoichiometry, we always start with our "given". In this case, it would be the 10.0 grams of NaHCO3. This unit always goes over 1.
So, our first step would look like this:
10.0
------
1
Next, we need to cancel out grams to get to moles. To do this, we will do grams of citric acid on the BOTTOM of the next step, so it cancels out. This unit in grams will be the mass of NaHCO3, which is 84.007. Then, we will do our unit of moles on top. Since this is unknown, it will be 1.
So, our 2nd step would look like this:
1 mole CO2
-----------------
84.007g NaHCO3
When we put it together: our complete stoichiometry problem would look like this:
10.0g NaHCO3 1mol CO2
---------------------- x -------------------------
1 84.007g NaHCO3
Now to find our answer, all we need to do is:
Multiply the two top numbers together (which is 10.0)
Multiply the two bottom numbers together (Which is 84.007)
And then....
Divide the top answer by the bottom answer.
10.0/84.007 is 0.119
So, from 10.0 grams of citric acid, we have 0.119 moles of CO2.
Hope I could help!
Answer:


Explanation:
<u>Calculation of the mass of chromium as:-
</u>
Moles = 1.002 moles
Molar mass of chromium = 51.9961 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>Calculation of the mass of neon as:-
</u>
Moles =
moles
Molar mass of neon = 20.1797 g/mol
Thus,

Answer:
2,019 km
Explanation:
Step 1: Given data
Distance traveled by the car (D): 1,255 mi
Step 2: Convert the distance traveled by the car to kilometers
To convert one unit into another, we use a conversion factor. In this case, the appropriate conversion factor between miles and kilometers is 1 mile = 1.609 km. The distance traveled by the car, in kilometers, is:
D = 1,255 mi × (1.609 km/1 mi) = 2,019 km
To determine the time it takes to completely vaporize the given amount of water, we first determine the total heat that is being absorbed from the process. To do this, we need information on the latent heat of vaporization of water. This heat is being absorbed by the process of phase change without any change in the temperature of the system. For water, it is equal to 40.8 kJ / mol.
Total heat = 40.8 kJ / mol ( 1.50 mol ) = 61.2 kJ of heat is to be absorbed
Given the constant rate of 19.0 J/s supply of energy to the system, we determine the time as follows:
Time = 61.2 kJ ( 1000 J / 1 kJ ) / 19.0 J/s = 3221.05 s