Answer:
The specie which is oxidized is:- 
The specie which is reduced is:- 
Explanation:
Oxidation reaction is defined as the chemical reaction in which an atom looses its electrons. The oxidation number of the atom gets increased during this reaction.
Reduction reaction is defined as the chemical reaction in which an atom gains electrons. The oxidation number of the atom gets reduced during this reaction.
For the given chemical reaction:
The half cell reactions for the above reaction follows:
Oxidation half reaction: 
Reduction half reaction: 
Thus, the specie which is oxidized is:- 
The specie which is reduced is:- 
H will definitely be positive because a bond is always more stable than no bond surely if it is a sigma bond.
For G you can't really know because you don't know how much energy is provided by the bond and if it outways the loss in disorder.
The reaction will become more spontaneous with a lower temperature because H tells you the reaction is exotherm
Answer:
38503.5N
Explanation:
Data obtained from the question include:
P (pressure) = 5.00 atm
Now, we need to convert 5atm to a number in N/m2 in order to obtain the desired result of force in Newton (N). This is illustrated below:
1 atm = 101325N/m2
5 atm = 5 x 101325 = 506625N/m^2
A (area of piston) = 0.0760 m^2
Pressure is force per unit area. Mathematically it is written as
P = F/A
F = P x A
F = 506625 x 0.0760
F = 38503.5N
Therefore, the force exerted on the piston is 38503.5N
Answer:
a) find attached image 1
b) find attached image 2
Explanation :
The more stable radical is formed by a reaction with smaller bond dissociation energy.
since the bond dissociation for cleavage of the bond to form primary free radical is higher, more energy must be added to form it. This makes primary free radical higher in energy and therefore less stable than secondary free radical.
Answer: 36.9 g
Explanation:
P4 + 5O2 = P4O10 Balanced equation
moles P4 present = 23.9 g x 1 mole/123.88 g = 0.193 moles
moles O2 present = 20.8 g x 1 mol/32 g = 0.65 moles O2
From balanced equation, mole ratio O2 : P4 is 5:1. Is 0.65 moles O2 5x 0.193 moles? NO. You don't have enough O2.
O2 is limiting in this reaction.
theoretical moles of P4O10 = 0.65 moles O2 x 1 mole P4O10/5 moles O2 = 0.13 moles P4O10
mass of P4O10 produced = 0.13 moles x 283.9 g = 36.9 g