answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
2 years ago
10

The environment affects people, but people don't affect the environment.TRUE OR FALSE

Physics
1 answer:
Drupady [299]2 years ago
5 0

Answer: False

Explanation:

The statement that the environment affects people, but people don't affect the environment is incorrect. It should be noted that people also affect the environment.

Some of our impact on the environment include pollution, deforestation, overpopulation, burning of fossil fuels etc. Thus has resulted in changes such as erosion, climate change, etc.

You might be interested in
How far must 5N force pull a 50g toy car if 30J of energy are transferred?​
Alborosie

Answer: 6 m

Explanation:

30 = 5 * d

d = 30/5

d = 6 m

7 0
1 year ago
An ice hockey puck is tied by a string to a stake in the ice. the puck is then swung in a circle. what force is producing the ce
Taya2010 [7]
In a circular motion scenario, the force that pulls the revolving object towards the centre is the force that produces the centripetal acceleration. So, in this case, the tension on the string is the force that pulls the puck towards the centre.

Therefore, it is the tension in the string that causes the centripetal acceleration of the puck

Hope I helped!! xx
8 0
2 years ago
Read 2 more answers
A p-type Si sample is used in the Haynes-Shockley experiment. The length of the sample is 2 cm, and two probes are separated by
Airida [17]

Answer:

Mobility of the minority carriers, \mu_{n} =1184.21 cm^{2} /V-sec

Diffusion coefficient for minority carriers,D_{n} = 29.20 cm^2 /s

Verified from Einstein relation as  \frac{D_{n} }{\mu_{n} }  = 25 mV

Explanation:

Length of sample, l_{s} = 2 cm

Separation between the two probes, L = 1.8 cm

Drift time, t_{d} = 0.608 ms

Applied voltage, V = 5 V

Mobility of the minority carriers ( electrons), \mu_{n} = \frac{V_{d} }{E}

Where the drift velocity, V_{d} = \frac{L}{t_{d} }

V_{d} = \frac{1.8}{0.608 * 10^{-3} } \\V_{d} = 2960.53 cm/s

and the Electric field strength, E = \frac{V}{l_{s} }

E = 5/2

E = 2.5 V/cm

Mobility of the minority carriers:

\mu_{n} = 2960.53/2.5\\\mu_{n} =1184.21 cm^{2} /V-sec

The electron diffusion coefficient, D_{n} = \frac{(\triangle x)^{2} }{16 t_{d} }

\triangle x = (\triangle t )V_{d}, where Δt = separation of pulse seen in an oscilloscope in time( it should be in micro second range)

\triangle x = \frac{(\triangle t) L}{t_{d} } \\\triangle x = \frac{180*10^{-6} * 1.8}{0.608*10^{-3}  }\\\triangle x =0.533 cm

D_{n} = \frac{0.533^{2} }{16 * 0.608 * 10^{-3} }\\D_{n} = 29.20 cm^2 /s

For the Einstein equation to be satisfied, \frac{D_{n} }{\mu_{n} } = \frac{KT}{q} = 0.025 V

\frac{D_{n} }{\mu_{n} } = \frac{29.20}{1184.21} \\\frac{D_{n} }{\mu_{n} } = 0.025 = 25 mV

Verified.

4 0
2 years ago
1. A 9.4×1021 kg moon orbits a distant planet in a circular orbit of radius 1.5×108 m. It experiences a 1.1×1019 N gravitational
sattari [20]

Answer:

26 days

Explanation:

m = 9.4×1021 kg

r= 1.5×108 m

F = 1.1×10^ 19 N

We know Fc = \frac{m v^{2} }{r}

==> 1.1 × 10^{19} = (9.4 × 10^{21} × v^{2} ) ÷ 1.5 × 10^{8}

==> 1.1 × 10^{19} = v^{2} × 6.26×10^{13}

==> v^{2} =  1.1 × 10^{19} ÷ 6.26×10^{13}

==> v^{2} = 0.17571885 × 10^{6}

==> v= 0.419188323 × 10^{3} m/sec

==> v= 419.188322834 m/s

Putting value of r and v from above in ;

T= 2πr ÷ v

==> T= 2×3.14×1.5×10^{8} ÷ 0.419188323 × 10^{3}

==> T = 22.472× 100000 = 2247200 sec

but

86400 sec = 1 day

==> 2247200 sec= 2247200 ÷ 86400 = 26 days

3 0
2 years ago
Read 2 more answers
An automobile traveling at 25.0 km/h along a straight, level road accelerates to 65.0 km/h in 6.00 s. what is the magnitude of t
USPshnik [31]
Note that
1 km/h = (1000 m)/(3600 s) = 0.27778 m/s

Initial velocity, v₁ = 25 km/h = 6.9444 m/s
Final velocity, v₂ = 65 km/h = 18.0556 m/s

Time interval, dt = 6 s.

Calculate average acceleration.
a = (v₂ - v₁)/dt
   = (18.0556 - 6.9444 m/s)/(6 s)
   = 1.852 m/s²

Answer:
The average acceleration is 1.85 m/s² (nearest hundredth)
3 0
2 years ago
Other questions:
  • A box is at rest on a ramp at an incline of 22°. The normal force on the box is 538 N.
    14·2 answers
  • The first law of thermodynamics states that ___. when a process converts energy from one form to another, some energy converted
    8·2 answers
  • An overhang hollow shaft carries a 900 mm diameter pulley, whose centre is 250 mm from the centre of the nearest bearing. The we
    10·1 answer
  • You are standing at rest at a bus stop. A bus moving at a constant speed of 5.00 mm/???????? passes you. When the rear of the bu
    5·2 answers
  • If an electron is accelerated from rest through a potential difference of 9.9 kV, what is its resulting speed?
    12·1 answer
  • Two wires with equal lengths are made of pure copper. The diameter of wire A is three times the diameter of wire B. When 8 kg ma
    7·1 answer
  • A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
    14·1 answer
  • Two strings are respectively 1.00 m and 2.00 m long. Which of the following wavelengths, in meters, could represent harmonics pr
    11·1 answer
  • A dog is 60m away while moving at constant velocity of 10m/s towards you. Where is the dog after 4 seconds?
    15·2 answers
  • Four students were loading boxes of food collected during a food drive. The force that each student exerted while lifting and th
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!