answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
2 years ago
6

An astronaut weighs 8.00 × 102 newtons on the sur- face of Earth. What is the weight of the astronaut 6.37 × 106 meters above th

e surface of Earth?
Physics
1 answer:
kolbaska11 [484]2 years ago
5 0

Answer:

mg=200.4 N.

Explanation:

This problem can be solved using Newton's law of universal gravitation: F=G\frac{m_{1}m_{2}}{r^{2}},

where F is the gravitational force between two masses m_{1} and m_{2}, r is the distance between the masses (their center of mass), and G=6.674*10^{-11}(m^{3}kg^{-1}s^{-2}) is the gravitational constant.

We know the weight of the astronout on the surface, with this we can find his mass. Letting w_{s} be the weight on the surface:

w_{s}=mg,

mg=8*10^{2},

m=(8*10^{2})/g,

since we now that g=9.8m/s^{2} we get that the mass is

m=81.6kg.

Now we can use Newton's law of universal gravitation

F=G\frac{Mm}{r^{2}},  

where m is the mass of the astronaut and M is the mass of the earth. From Newton's second law we know that

F=ma,

in this case the acceleration is the gravity so

F=mg, (<u>becarefull, gravity at this point is no longer</u> 9.8m/s^{2} <u>because we are not in the surface anymore</u>)

and this get us to

mg=G\frac{Mm}{r^{2}}, where mg is his new weight.

We need to remember that the mass of the earth is M=5.972*10^{24}kg and its radius is 6.37*10^{6}m.

The total distance between the astronaut and the earth is

r=(6.37*10^{6}+6.37*10^{6})=2(6.37*10^{6})=12.74*10^{6} meters.

Now we can compute his weigh:

mg=G\frac{Mm}{r^{2}},

mg=(6.674*10^{-11})\frac{(5.972*10^{24})(81.6)}{(12.74*10^{6})^{2}},

mg=200.4 N.

You might be interested in
A battery charges a parallel-plate capacitor fully and then is removed. The plates are then slowly pulled apart. What happens to
White raven [17]

Answer:

<h2>The potential difference increases </h2>

Explanation:

from the relation E= \frac{V}{d}

where E= electric field (force per coulomb)

            V= voltage

            d= distance

Hence the voltage is going to be V= E×d.

Therefore this means that increasing the distance increases the voltage.

3 0
2 years ago
Which of the following strategies can help Earth's coal supply last longer?
ivanzaharov [21]
D. Teach the public energy conservation
7 0
2 years ago
Read 2 more answers
(Another tomato/skyscraper problem.) You are looking out your window in a skyscraper, and again your window is at a height of 45
Ivan

Answer:

1027.2 m

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 32.2 ft/s

s=ut+\frac{1}{2}at^2\\\Rightarrow u=\frac{s-\frac{1}{2}at^2}{t}\\\Rightarrow u=\frac{450-\frac{1}{2}\times 32.2\times 2^2}{2}\\\Rightarrow u=192.8\ ft/s

v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{192.8^2-0^2}{2\times 32.2}\\\Rightarrow s=577.20\ m

The height the tomato would fall is 450+577.2 = 1027.2 m

6 0
3 years ago
Acetone, a component of some types of fingernail polish, has a boiling point of 56°C. What is its boiling point in units of kelv
mixas84 [53]

Answer:

The boiling point of Acetone is 329K (in 3 significant figures)

Explanation:

Boiling point of Acetone = 56°C = 56 + 273K = 329K (in 3 significant figures)

7 0
2 years ago
Read 2 more answers
A person drops a stone down a well and hears the echo 8.9 s later. if it takes 0.9 s for the echo to travel up the well, approxi
Temka [501]

Total time in between the dropping of the stone and hearing of the echo = 8.9 s

Time taken by the sound to reach the person = 0.9 s

Time taken by the stone to reach the bottom of the well = 8.9 - 0.9 = 8 seconds

Initial speed (u) = 0 m/s

Acceleration due to gravity (g) = 9.8 m/s^2

Time taken (t) = 8 seconds

Let the depth of the well be h.

Using the second equation of motion:

h = ut + \frac{1}{2}\times a \times t^2

h = 0 \times 8 + \frac{1}{2} \times 9.8 \times 8^2

h = 313.6 m

Hence, the depth of the well is 313.6 m

4 0
2 years ago
Other questions:
  • Zamir and Talia raced through a maze. Zamir walked 2 m north, 2 m east, 4 m south, 2 m east, 4 m north, 2 m east, 3 m south, 4 m
    11·2 answers
  • Determine the length of a copper wire that has a resistance of 0.172 ? and cross-sectional area of 7.85 × 10-5 m2. The resistivi
    5·1 answer
  • A student, along with her backpack on the floor next to her, are in an elevator that is accelerating upward with acceleration a.
    12·1 answer
  • Two cables of the same length are made of the same material, except that one cable has twice the diameter of the other cable. Wh
    14·1 answer
  • A disk of radius R (Fig. P25.73) has a nonuniform surface charge density s 5 Cr, where C is a constant and r is measured from th
    6·1 answer
  • an ice skater, standing at rest, uses her hands to push off against a wall. she exerts an average force on the wall of 120 N and
    14·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • A ball is dropped from the top of an eleven-story building to a balcony on the ninth floor. In which case is the change in the p
    6·1 answer
  • What is the minimum amount of energy required to completely melt a 7.25-kg lead brick which has a starting temperature of 18.0 °
    7·1 answer
  • in the space below derive two equations one in the y direction and one in the x direction expressing newton’s second law using s
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!