Answer:
The specific heat for the titanium metal is 0.524 J/g°C.
Explanation:
Given,
Q = 1.68 kJ = 1680 Joules
mass = 126 grams
T₁ = 20°C
T₂ = 45.4°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
Here, ΔT = T₂ - T₁ = 45.4 - 20 = 25.4°C.
Substituting values,
1680 = (126)(25.4)(Cp)
By solving,
Cp = 0.524 J/g°C.
The specific heat for the titanium metal is 0.524 J/g°C.
I will solve this question assuming the reaction equation look like this:
<span>MnO2 + 4 HCl ---> MnCl2 + Cl2 + 2 H2O.
</span>
For every one molecule of MnO2 used, there will be one molecule of Cl2 formed. If the molecular mass of MnO2 is 87g/mol and molecular mass of Cl2 is <span> 73.0 g/mol, the mass of MnO2 needed would be:
Cl mass/Cl molecular mass * MnO2 molecular mass=
25g/ (73g/mol) * (87g/mol) * 1/1= 29.8 grams</span>
Answer:
- 0.0249% Sb/cm

Explanation:
Given that:
One surface contains 1 Sb atom per 10⁸ Si atoms and the other surface contains 500 Sb atoms per 10⁸ Si atoms.
The concentration gradient in atomic percent (%) Sb per cm can be calculated as follows:
The difference in concentration = 
The distance
= 0.2-mm = 0.02 cm
Now, the concentration of silicon at one surface containing 1 Sb atom per 10⁸ silicon atoms and at the outer surface that has 500 Sb atom per 10⁸ silicon atoms can be calculated as follows:

= - 0.0249% Sb/cm
b) The concentration
of Sb in atom/cm³ for the surface of 1 Sb atoms can be calculated by using the formula:

Lattice parameter = 5.4307 Å; To cm ; we have
= 

= 
The concentration
of Sb in atom/cm³ for the surface of 500 Sb can be calculated as follows:

= 
= 
Finally, to calculate the concentration gradient



Answer:remove 4 electrons
Explanation:
I took the test just a minute a go
Answer: The oxidation state of selenium in SeO3 is +6
Explanation:
SeO3 is the chemical formula for selenium trioxide.
- The oxidation state of SeO3 = 0 (since it is stable and with no charge)
- the oxidation number of oxygen (O) IN SeO3 is -2
- the oxidation state of selenium in SeO3 = Z (let unknown value be Z)
Hence, SeO3 = 0
Z + (-2 x 3) = 0
Z + (-6) = 0
Z - 6 = 0
Z = 0 + 6
Z = +6
Thus, the oxidation state of selenium in SeO3 is +6