answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murrr4er [49]
2 years ago
12

A 950 kg cylindrical buoy floats vertically in seawater. The diameter of the buoy is 0.900 m. Calculate the additional distance

the buoy will sink when an 80.0 kg man stands on top of it.
Physics
1 answer:
igor_vitrenko [27]2 years ago
6 0

Answer:

Additional depth is 0.13 m

Explanation:

mass of cylinder, M = 950 kg

Let the initial height inside water is h.

diameter = 0.9 m

radius, r = 0.45 m

mass of man, m = 80 kg

density of water = 1000 kg/m^3

Let the additional distance is y.

For initial stage:

Buoyant force = weight

Volume immersed x density of water x g = M g

3.14 x 0.45 x 0.45 x 1000 x h = 950

h = 1.49 m

Now :

3.14 x 0.45 x 0.45 x 1000 x ( h + y) = 950 + 80

950 +  635.85 y = 950 + 80

y = 0.13 m

You might be interested in
Alicia can row 6 miles downstream in the same time it takes her to row 4 miles upstream. She rows downstream 3 miles/hour faster
m_a_m_a [10]
Let us assume the upstream rowing rate of Alicia = x
Let us assume the downstream rowing rate of Alicia = y
We already know that
Travelling time = Distance traveled/rowing rate
Then
6/(x + 3) = 4/x
6x = 4x + 12
6x - 4x = 12
2x = 12
x = 6
Then
Rowing rate of Alicia going upstream = 6 miles per hour
Rowing rate of Alicia going downstream = 9 miles per hour.
4 0
2 years ago
Read 2 more answers
In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 71.0 m/s. Th
qaws [65]

Answer:

The distance between both cars is 990 m

Explanation:

The equations for the position and the velocity of an object moving in a straight line are as follows:

x = x0 + v0 * t + 1/2 * a * t²

v = v0 + a * t

where:

x = position of the car at time "t"

x0 = initial position

v0 = initial speed

t = time

a = acceleration

v = velocity

First let´s find how much time it takes the driver to come to stop (v = 0).  We will consider the origin of the reference system as the point at which the driver realizes she must stop. Then x0 = 0

With the equation of velocity, we can obtain the acceleration and replace it in the equation of position, knowing that the position will be 250 m at that time.

v = v0 + a*t

v-v0 / t = a

0 m/s - 71.0 m/s / t =a

-71.0 m/s / t = a

Replacing in the equation for position:

x = v0* t +1/2 * a * t²

250 m = 71.0 m/s * t + 1/2 *(-71.0 m/s / t) * t²

250 m = 71.0 m/s * t - 1/2 * 71.0 m/s * t

250m = 1/2 * 71.0m/s *t

<u>t = 2 * 250 m / 71.0 m/s = 7.04 s</u>

It takes the driver 7.04 s to stop.

Then, we can calculate how much time it took the driver to reach her previous speed. The procedure is the same as before:

v = v0 + a*t

v-v0 / t = a      now v0 = 0 and v = 71.0 m/s

(71.0 m/s - 0 m/s) / t = a

71.0 m/s / t =a

Replacing in the position equation:

x = v0* t +1/2 * a * t²      

390 m = 0 m/s * t + 1/2 * 71.0 m/s / t * t²       (In this case, the initial position is in the pit, then x0 = 0 because it took 390 m from the pit to reach the initial speed).

390m * 2 / 71.0 m/s = t

<u>t = 11.0 s</u>

In total, it took the driver 11.0s + 5.00 s + 7.04 s = 23.0 s to stop and to reach the initial speed again.

In that time, the Mercedes traveled the following distance:

x = v * t = 71.0 m/s * 23.0 s = 1.63 x 10³ m

The Thunderbird traveled in that time 390 m + 250 m = 640 m.

The distance between the two will be then:

<u>distance between both cars = 1.63 x 10³ m - 640 m = 990 m.  </u>

3 0
2 years ago
Which equation is most likely used to determine the acceleration from a velocity vs:time graph?
tresset_1 [31]
Acceleration, a =  (v - u)/t

where v is the final velocity, u is the initial velocity, and t is the time.

This formula on a velocity time graph represents the slope of the graph.
 
7 0
2 years ago
Read 2 more answers
An 80-g particle moving with an initial speed of 50 m/s in the positive x direction strikes and sticks to a 60-g particle moving
liubo4ka [24]

The collision is a form of inelastic collision because the it forms a single mass after is collides. So it can be solve by momentum balance

( 0.08 kg * 50 m/s ) + ( 0.06 kg * 50 m/s) = ( 0.08 + 0.06 kg ) v

V = 50 m/s

So the kinetic energy lost is

KE = 0.5 (50 m/s)^2) *( 0.14 – 0.08kg )

KE = 75 J

8 0
2 years ago
1. A 930-kg car traveling 56 km/h comes to a complete stop in 2.0 s. What is the
Juli2301 [7.4K]

The force exerted on the car during this stop is 6975N

<u>Explanation:</u>

Given-

Mass, m = 930kg

Speed, s = 56km/hr = 56 X 5/18 m/s = 15m/s

Time, t = 2s

Force, F = ?

F = m X a

F = m X s/t

F = 930 X 15/2

F = 6975N

Therefore, the force exerted on the car during this stop is 6975N

6 0
2 years ago
Other questions:
  • Which field in an 802.11a plcp frame are used to initialize part of the transmitter and receiver circuits?
    8·1 answer
  • 4.A photon of green light strikes an unknown metal and an electron is emitted. The voltage is set to 2 volts. The electron canno
    6·1 answer
  • 50 POINTS! A Boy throws a ball horizontally a distance of 22m downrange from the top of a tower that is 20.0m tall. What is his
    7·1 answer
  • An overhang hollow shaft carries a 900 mm diameter pulley, whose centre is 250 mm from the centre of the nearest bearing. The we
    10·1 answer
  • Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller
    12·1 answer
  • A stone with a mass of 1.0 kg is tied to the end of a light string which keeps it moving in a circle with a constant speed of 4.
    5·1 answer
  • Water evaporating from a pond does so as if it were diffusing across an air film 0.15 cm thick. The diffusion coefficient of wat
    7·1 answer
  • An electron is moving in the vicinity of a long, straight wire that lies along the z-axis. The wire has a constant current of 8.
    10·1 answer
  • A professional boxer hits his opponent with a 1025 N horizontal blow that lasts 0.150 s. The opponent's total body mass is 116 k
    7·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!