<span> Rising, warm, moist air masses cool and release precipitation as they rise and then at high altitude, cool
and sink back to the surface as dry air masses after moving north or south of the tropics.
</span>
1) The buoyant force acting on an object immersed in a fluid is:

where

is the density of the fluid,

is the volume of displaced fluid, and

is the gravitational acceleration.
2) We must calculate the volume of displaced fluid. Since the titanium object is completely immersed in the fluid (air), this volume corresponds to the volume of 1 Kg of titanium, whose density is

. Using the relationship between density, volume and mass, we find

3) Now we can recall the formula written at step 1) and calculate the buoyant force. The air density is

, so we have

4) The weight of 1 Kg of titanium is instead:

So, the buoyant force is negligible compared to the weight.
Answer:
towards left
Explanation:
As we know that there is no external force on the system of two cart so total momentum of the system is conserved
so we will say

now plug in all data into the above equation

here we assumed that left direction of motion is negative while right direction is positive
so we can solve it for speed v now



In Millikan oil drop experiment, when the switch is opened and by altering supply the charge of electron is determined.
Explanation:
Millikan's oil drop experiment is held to determine the terminal velocity and charge of the oil drop.
Firstly without any supply of voltage when an oil drop is sprinkled and these droplets gather electrons together and gives negative charge as they pass through air.
By applying and altering voltage applied on the plates, drop can be suspended in air. Millikan observed one drop after another, varying the voltage and noting the effect. After many repetitions he concluded that charge could assume only certain fixed values.
After conducting many times he concluded 1.602176487 ×10−19 C as the charge of an electron.