Answer:
The estimated feed rate of logs is 14.3 logs/min.
Explanation:
The product of the process is 2000 tons/day of dry wood pulp, of 85 wt% of cellulose. That represents (2000*0.85)=1700 tons/day of cellulose.
That cellulose has to be feed by the wood chips, which had 47 wt% of cellulose in its composition. That means you need (1700/0.47)=3617 tons/day of wood chips to provide all that cellulose.
Th entering flow is wood chips with 45 wt% of water. This solution has an specific gravity of 0.640.
To know the specific gravity of the wood chips we have to write a volume balance. We also know that Mw=0.45*M and Mc=0.55*M.

The specific gravity of the wood chips is 0.494.
The average volume of a log is

The weight of one log is

To provide 3617 ton/day of wood chips, we need


The feed rate of logs is 14.3 logs/min.
Explanation: Saponification reaction is a reaction in which hydrolysis of fats takes place under basic conditions giving glycerol and a salt of corresponding fatty acid.
We are given a Fatty acid called as Trimyristin.
Its reaction with KOH leads to the formation of soap and is given by the equation:


The condensed structural formula for the equation is given in the image attached.
Answer:


Explanation:
<u>Calculation of the mass of chromium as:-
</u>
Moles = 1.002 moles
Molar mass of chromium = 51.9961 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>Calculation of the mass of neon as:-
</u>
Moles =
moles
Molar mass of neon = 20.1797 g/mol
Thus,

We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>
This is an incomplete question, the table is attached below.
Answer : The correct ranking of the solution from most exothermic to most endothermic will be: A, B and C.
Explanation :
As we know that the intermolecular force of attraction play an important role in the interaction of solute-solute, solute-solvent and solvent solvent solution.
In the solution A, the solute-solute and solvent-solvent interactions are weak. So, their solute-solvent interaction will be strong. That means, the solution will be more exothermic.
In the solution C, the solute-solute and solvent-solvent interactions are strong. So, their solute-solvent interaction will be weak. That means, the solution will be more endothermic.
Thus, the correct ranking of the solution from most exothermic to most endothermic will be: A, B and C.