Answer: Thermal comductivity (K) is 3.964x 10 ^-3 W/m.k
Explanation:
Thermal comductivity K = QL/A∆T
Q= Amount of heat transferred through the material in watts = 75W
L= Distance between two isothermal planes = 0.740mm
A= Area of the surface in square metres = 2m^2
∆T= Temperature change = (37-30) °C.
Solving this : K =( 75 x 0.740 x 10^-3)/ 2 x (37-30)
K = 3.964x 10 ^-3 W/m.k
Answer:
The answer to your question is:
Explanation:
Data
Duane Albert
d = 5 m ; v = 3 m/s v = 4.2 m/s
a) b)
Duane's Albert's
d = 5 + (3)t d = 4.2t
d = 5 + 3t
c) 5 + 3t = 4.2t
4.2t - 3t = 5
1.2t = 5
t = 4.17 s
d)
Duane's
d= 5 + 3(4.17)
d = 17.51 m
Alberts
d = 4.2(4.17)
d = 17.51 m
Answer:
height of the water rise in tank is 10ft
Explanation:
Apply the bernoulli's equation between the reservoir surface (1) and siphon exit (2)

-------(1)
substitute 
0ft/s for V₁, 20ft for (z₁ - z₂) and 32.2ft/s² for g in eqn (1)


Applying bernoulli's equation between tank surface (3) and orifice exit (4)

substitute

0ft/s for V₃, h for z₃, 0ft for z₄, 32,2ft/s² for g

At equillibrium Fow rate at point 2 is equal to flow rate at point 4
Q₂ = Q₄
A₂V₂ = A₃V₃
The diameter of the orifice and the siphon are equal , hence there area should be the same
substitute A₂ for A₃
for V₂
for V₄
A₂V₂ = A₃V₃

Therefore ,height of the water rise in tank is 10ft
Answer:
The ball reaches Barney head in 
Explanation:
From the question we are told that
The rise velocity is 
The height considered is 
The horizontal velocity of the large object is 
Generally from kinematic equation

Here s is the distance of the object from Barney head ,
u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter
So

So

= 
Solving the above equation using quadratic formula
The value of t obtained is 
The object with the greater mass has a greater gravitational force and that determines what satellites orbit around it. An object with more mass will never orbit an object with less.