Answer:
The answer is "
"
Explanation:
The formula for velocity:


Answer:
|v| = 8.7 cm/s
Explanation:
given:
mass m = 4 kg
spring constant k = 1 N/cm = 100 N/m
at time t = 0:
amplitude A = 0.02m
unknown: velocity v at position y = 0.01 m

1. Finding Ф from the initial conditions:

2. Finding time t at position y = 1 cm:

3. Find velocity v at time t from equation 2:

Answer:
y = 54.9 m
Explanation:
For this exercise we can use the relationship between the work of the friction force and mechanical energy.
Let's look for work
W = -fr d
The negative sign is because Lafourcade rubs always opposes the movement
On the inclined part, of Newton's second law
Y Axis
N - W cos θ = 0
The equation for the force of friction is
fr = μ N
fr = μ mg cos θ
We replace at work
W = - μ m g cos θ d
Mechanical energy in the lower part of the embankment
Em₀ = K = ½ m v²
The mechanical energy in the highest part, where it stopped
= U = m g y
W = ΔEm =
- Em₀
- μ m g d cos θ = m g y - ½ m v²
Distance d and height (y) are related by trigonometry
sin θ = y / d
y = d sin θ
- μ m g d cos θ = m g d sin θ - ½ m v²
We calculate the distance traveled
d (g syn θ + μ g cos θ) = ½ v²
d = v²/2 g (sintea + myy cos tee)
d = 9.8 12.6 2/2 9.8 (sin16 + 0.128 cos 16)
d = 1555.85 /7.8145
d = 199.1 m
Let's use trigonometry to find the height
sin 16 = y / d
y = d sin 16
y = 199.1 sin 16
y = 54.9 m
Answer: the answer is d
Explanation: there are not more than 10 violations within a twelve month period hope this helps
Answer:
The bucket located in the direction opposite of displacement of the rod for balancing will be heavier.
Explanation:
Moment of a force is directly proportional to it's distance from the point about which rotation takes place. In the given case the man increases the lever arm(distance from point of rotation of the force) to balance the moment of the lighter bucket. Thus in the direction of the increase the lighter bucket will be placed.