Answer: a. Synthesis
Explanation:
a. Synthesis reaction is a chemical reaction in which two reactants are combining to form one product.
Example:
Thus magnesium in its elemental form is combining with oxygen to form magnesium oxide.
b. Double displacement reaction is one in which exchange of ions take place.
Example:
c. Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.
Example:
Answer:
2.05 liters
Calculate the molar mass of Ca(OH)2 =74.09g/mol
Calculate how many mol of Ca(OH) are in 64g
n=m/MM
n=64/74.09
n=0.86 mol
Calculate the volume of solution
M=n/V => V=n/M
V= 0.86 mol/ 0.420M
V= 2.05 liters
Answer:
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL
<em><u>Glass that will float</u></em>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL
Explanation:
Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.
So, the mathematical expression for the density is:
By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.
The greater the density of an object the more it will try to sink in the liquid.
As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.
The flotation condition may be summarized by:
- When the density of the object < density of the liquid, the object will float
- When the density of the object = density of the liquid: the object will neither float nor sink
- When the density of the object > density of the liquid: the object will sink.
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.
<u><em>Glass that will float</em></u>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16
Answer:
The pressure in container A is higher than container B.
Explanation:
Applying ideal gas law PV=nRT, With the equation we can predict volume V is inverse to pressure P, that means if volume increase, pressure decrease.
The volume in container B is half A, that means respectively, pressure is the double.
check it with the equation:
n=1/18=0.05
R=62.36 L*Torr/K*mol
T=273+20=293 K
V=0.02 L
P=nRT/V =0.056*62.36*293/0.01=102.3 torr
I hope my answer helps you