Answer:
The specific heat of the metal is 0.466 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q= 2330 J
- c= ?
- m= 25 g
- ΔT= 200 °C
Replacing:
2330 J= c*25 g* 200 °C
Solving:

c=0.466 
<u><em>The specific heat of the metal is 0.466 </em></u>
<u><em></em></u>
<span>100.
ppb of chcl3 in drinking water means 100 g of CHCl3 in 1,000,0000,000 g of water
Molarity, M
M = number of moles of solute / volume of solution in liters
number of moles of solute = mass of CHCl3 / molar mass of CHCl3
molar mass of CHCl3 = 119.37 g/mol
number of moles of solute = 100 g / 119.37 g/mol = 0.838 mol
using density of water = 1 g/ ml => 1,000,000,000 g = 1,000,000 liters
M = 0.838 / 1,000,000 = 8.38 * 10^ - 7 M <----- answer
Molality, m
m = number of moles of solute / kg of solvent
number of moles of solute = 0.838
kg of solvent = kg of water = 1,000,000 kg
m = 0.838 moles / 1,000,000 kg = 8.38 * 10^ - 7 m <----- answer
mole fraction of solute, X solute
X solute = number of moles of solute / number of moles of solution
number of moles of solute = 0.838
number of moles of solution = number of moles of solute + number of moles of solvent
number of moles of solvent = mass of water / molar mass of water = 1,000,000,000 g / 18.01528 g/mol = 55,508,435 moles
number of moles of solution = 0.838 moles + 55,508,435 moles = 55,508,436 moles
X solute = 0.838 / 55,508,435 = 1.51 * 10 ^ - 8 <------ answer
mass percent, %
% = (mass of solute / mass of solution) * 100 = (100g / 1,000,000,100 g) * 100 =
% = 10 ^ - 6 % <------- answer
</span>
Answer: 32.94 g
Explanation: It's stoichiometry problem so balanced equation is required. The balanced equation is given below:

From the balanced equation, krypton and chlorine react in 1:2 mol ratio. We will calculate the moles of each reactant gas using ideal gas law equation(PV = nRT) and then using mol ratio the limiting reactant is figured out that helps to calculate the amount of the product formed.
for Krypton, P = 0.500 atm and for chlorine, P = 1.50 atm
V = 15.0 L
T = 350.8 + 273 = 623.8 K
For krypton, 
n = 0.146 moles
for chlorine, 
n = 0.439
From the mole ratio, 1 mol of krypton reacts with 2 moles of chlorine. So 0.146 moles of krypton will react with 2 x 0.146 = 0.292 moles of chlorine.
Since 0.439 moles of chlorine are available, it is present in excess and hence the limiting reactant is krypton.
So, the amount of product formed is calculated from moles of krypton.
Molar mass of krypton tetrachloride is 225.61 gram per mol.
There is 1:1 mol ratio between krypton and krypton tetrachloride.

= 32.94 g of 
So, 32.94 g of the product will form.
Sr(s)+Mg²+(aq)→Sr²+(aq)+Mg(s)
Number of e-'s transfered are, n=2. Equilibrium constant,
K=2.69×10∧12
ΔG=-2.303RT logK
R=gasconstant=8.314J/mol-k
T= temperature in K= 25 oC=25+273=298K
The value we get ΔG = -70922.3J. But ΔG = -nFE
n= number of e-'s transfered in the reaction =2
F= farady = 96500C
E=potential of the cell is what?
∴E = ΔG.nF
=-(-70922.3)/2×96500)
=0.367v.