<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Answer:
Upper F subscript 2 (g) plus upper C a (s) right arrow with delta above upper C a upper F subscript 2 (s).
Explanation:
This is a chemical reaction problem.
In expressing any chemical reaction, we need to understand that there are reactants and products.
- The reactants are the species on the left hand side that are combining.
- The products are the species on the right hand side that are formed.
- Every chemical reaction is obeys the law of conservation of matter i.e equal number of matter on both sides.
Using the statement of this problem, we can deduce that;
Reactants are Fluorine gas and Calcium metal
Product is Calcium Fluoride
Note: A metal is a solid(s) and powder is a solid(s). A gas is denoted as (g). They depict the state of the species reacting.
F₂
+ Ca
→ CaF₂
We can see that equal number of atoms are on both sides of the expression.
Answer:
The answer is 465.6 mg of MgI₂ to be added.
Explanation:
We find the mole of ion I⁻ in the final solution
C = n/V -> n = C x V = 0.2577 (L) x 0.1 (mol/L) = 0.02577 mol
But in the initial solution, there was 0.087 M KI, which can be converted into mole same as above calculation, equal to 0.02242 mol.
So we need to add an addition amount of 0.02577 - 0.02242 = 0.00335 mol of I⁻. But each molecule of MgI₂ yields two ions of I⁻, so we need to divide 0.00335 by 2 to find the mole of MgI₂, which then is 0.001675 mol.
Hence, the weight of MgI₂ must be added is
Weight of MgI₂ = 0.001675 mol x 278 g/mol = 0.4656 g = 465.6 mg
Answer:
By decreasing pressure.
Explanation:
In order to prevent balloons from popping while making sculptures, it is suggested to decrease the pressure of air in parent balloon. Decreasing the pressure of parent balloon will allow it to twist easily and make designs.
This strategy will work according to Boyle's Law which states that, "Pressure and Volume are inversely proportional to each other at constant temperature".
Mathematically,
P ∝ 1/V
Or,
P = k/V
Or,
PV = k
Hence, as the new designs made after twisting are of less volume, therefore it is good to decrease the pressure in advance otherwise the resulting less volume will increase the pressure of daughter small balloons and will explode them.
Career planning is <span>essential for all high school students. They need to understand their strengths and weaknesses in order to learn where their talents lie. They should know career opportunities for the twenty-first century, their jobs require further schooling and how much the job they are interested in will pay.</span>