Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.
Answer: the answer is d
Explanation: there are not more than 10 violations within a twelve month period hope this helps
Answer:
<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>
Explanation:
The initial charge on 4 mF capacitor = 4 mf x 50 V = 200 mC
The initial Charge on 6 mF capacitor = 6 mf x 30 V =180 mC
Since the negative ends are joined together the total charge on both capacity would be;
q = 
q = 200 - 180
q = 20 mC
In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage
q = (4 x V) + (6 x V)
20 = 10 V
V = 2 V
For the final charge on 6.0 mF;
q = CV
q = 6.0 mF x 2 V
q = 12 mC
Therefore the final charge on the 6.0 mF capacitor would be 12 mC
Answer:
0.2cm towards the retina.
Explanation:
the focal length of the frog eye is
(1/f) = (1/10) + (1/0.8)
f = 0.74cm
Since the distance of the object is 15cm Hence
(1/0.74) = (1/15) + (1/V)
V = 0.78cm
Therefore the distance the retina is to move is
0.78cm - 0.8cm = 0.02cm towards the retina.
Answer:
The partial pressure of H2 is 0.375 atm
The partial pressure of Ne is also 0.375 atm
Explanation:
Mass of H2 = 1 g
Mass of Ne = 1 g
Mass of Ar = 1 g
Mass of Kr = 1 g
Total mass of gas mixture = 1 + 1 + 1 + 1 = 4 g
Pressure of sealed container = 1.5 atm
Partial pressure of H2 = (mass of H2/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm
Partial pressure of Ne = (mass of Ne/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm