Answer:
(6,2)
Step-by-step explanation:
Variable Definitions:
x= the number of commercials
y= the number of movies
Each commercial earns Emily $50, so x commercials would earn her 50x dollars in royalties. Each movie earns Emily $150, so y movies would earn her 150y dollars in royalties. Therefore, the total royalties 50x+150y equals $600:
50x+150y=600
Since Emily's songs were played on 3 times as many commercials as movies, if we multiply 3 by the number of movies, we will get the number of commercials, meaning x equals 3y.
x=3y
Write System of Equations:
50x+150y=600
x=3y
Solve for y in each equation:
1) 50x+150y=600
150y=−50x+600
y=-1/3x+4
2) x=3y
y=1/3x
The x variable represents the number of commercials and the yy variable represents the number of movies. Since the lines intersect at the point (6,2) we can say:
Emily's songs were played on 6 commercials and 2 movies.
Scale factor is given by:
(length of larger figure)/(length of smaller figure)=(width of larger figure)/(width of the smaller figure)=3.4
The length of the larger figure will be given by:
length=(scale factor)*(length of smaller figure)
=3.4*6=20.4 cm
width of the larger figure will be given by:
width=(scale factor)*(width of smaller figure)
=3.4*4.5
=15.3 cm
Therefore the dimension of the new parallelogram will be 20.4 cm by 15.3 cm
Answer:its 275 for 1, and 325 for 2
Step-by-step explanation:
i did it
Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
µ = 17
For the alternative hypothesis,
µ < 17
This is a left tailed test.
Since the population standard deviation is not given, the distribution is a student's t.
Since n = 80,
Degrees of freedom, df = n - 1 = 80 - 1 = 79
t = (x - µ)/(s/√n)
Where
x = sample mean = 15.6
µ = population mean = 17
s = samples standard deviation = 4.5
t = (15.6 - 17)/(4.5/√80) = - 2.78
We would determine the p value using the t test calculator. It becomes
p = 0.0034
Since alpha, 0.05 > than the p value, 0.0043, then we would reject the null hypothesis.
The data supports the professor’s claim. The average number of hours per week spent studying for students at her college is less than 17 hours per week.