Answer:
jump discontinuity at x = 0; point discontinuities at x = –2 and x = 8
Step-by-step explanation:
From the graph we can see that there is a whole in the graph at x=-2.
This is referred to as a point discontinuity.
Similarly, there is point discontinuity at x=8.
We can see that both one sided limits at these points are equal but the function is not defined at these points.
At x=0, there is a jump discontinuity. Both one-sided limits exist but are not equal.
<span>It is false since the rational function is discontinuous when the denominator is zero. But the denominator is a polynomial and a polynomial has only finitely many zeros. So the discontinuity points of a rational function is finite. </span>
Answer
AB would be the same as the original because the size never changes.
Step-by-step explanation:
<span>As restaurant owner
The probability of hiring Jun is 0.7 => p(J)
The probability of hiring Deron is 0.4 => p(D)
The probability of hiring at least one of you is 0.9 => p(J or D)
We have a probability equation:
p(J or D) = p(J) + p(D) - p(J and D) => 0.9 = 0.7 + 0.4 - p(J and D)
p(J and D) = 1.1 - 0.9 = 0.2
So the probability that both Jun and Deron get hired is 0.2.</span>