The density of a substance can simply be calculated by
dividing the mass by the volume:
density = mass / volume
Therefore calculating for the density since mass and volume
are given:
density = 46.0 g / 34.6 mL
density = 1.33 g / mL
In this instance we can use the ideal gas law equation to find the number of moles of gas inside the refrigerator
PV = nRT
where
P - pressure - 101 000 Pa
V - volume - 0.600 m³
n - number of moles
R - universal gas constant - 8.314 J/mol.K
T - temperature - 282 K
substituting these values in the equation
101 000 Pa x 0.600 m³ = n x 8.314 J/mol.K x 282 K
n = 25.8 mol
there are 25.8 mol of the gas
to find the mass of gas
mass of gas = number of moles x molar mass of gas
mass = 25.8 mol x 29 g/mol = 748.2 g
mass of gas present is 748.2 g
Answer:
So she is very anxious because she has to wait 345600 seconds
Explanation:
60 second = 1 minute
60 minute = 1 hour
1 hour has 3600 seconds (60*60)
24 hour = 1 day
3600 second * 24 hours =
1 day has 86400 seconds so in four days
86400 * 4 = 345600
Answer:
104.84 moles
Explanation:
Given data:
Moles of Boron produced = ?
Mass of B₂O₃ = 3650 g
Solution:
Chemical equation:
6K + B₂O₃ → 3K₂O + 2B
Number of moles of B₂O₃:
Number of moles = mass/ molar mass
Number of moles = 3650 g/ 69.63 g/mol
Number of moles = 52.42 mol
Now we will compare the moles of B₂O₃ with B from balance chemical equation:
B₂O₃ : B
1 : 2
52.42 : 2×52.42 = 104.84
Thus from 3650 g of B₂O₃ 104.84 moles of boron will produced.