It bonds atoms together to create molecules
The enthalpy change of the precipitation reaction is 84 kJ/mole
Why?
The chemical equation for the reaction is
AgNO₃(aq) + NaCl (aq) → AgCl(s) + NaNO₃(aq)
To find the enthalpy change we need to apply the following equation

To find the heat (Q):

Now, to find the number of moles that react (n):
![n=[AgNO_3]*v(L)=(0.1M)*(0.05L)=0.005moles](https://tex.z-dn.net/?f=n%3D%5BAgNO_3%5D%2Av%28L%29%3D%280.1M%29%2A%280.05L%29%3D0.005moles)
Having these two values we can plug in the first equation:

Have a nice day!
Answer:
= 0.134;
= 0.866
The partial pressure of isopropanol = 34.04 Torr; The partial pressure of propanol = 5.26 Torr
Explanation:
For each of the solutions:
mole fraction of isopropanol (
) = 1 - mole fraction of propanol (
).
Given: mole fraction of propanol = 0.247. Thus, the mole fraction of isopropanol = 1 - 0.247 = 0.753.
Furthermole, the partial pressure of isopropanol =
*vapor pressure of isopropanol = 0.753*45.2 Torr = 34.04 Torr
The partial pressure of propanol =
*vapor pressure of propanol = 0.247*20.9 Torr = 5.16 Torr
Similarly,
In the vapor phase,
The mole fraction of propanol (
) = 
Where,
is the partial pressure of propanol and
is the partial pressure of isopropanol.
Therefore,
= 5.26/(34.04+5.16) = 0.134
= 1 - 0.134 = 0.866
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>