Answer:
v = 66.4 m/s
Explanation:
As we know that plane is moving initially at speed of

now we have




now in Y direction we can use kinematics



since there is no acceleration in x direction so here in x direction velocity remains the same
so we will have



Answer:
The energy of this particle in the ground state is E₁=1.5 eV.
Explanation:
The energy
of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

So we can rewrite the energy in the ground state as:



Finally

Answer:
Time taken by the leaf to displace by 1.0 m distance is
seconds
Explanation:
As we know that initial velocity of the leaf is given as

now the acceleration upwards for the leaf is

The displacement of leaf in upward direction is
d = 1 m
so now we have


seconds
Answer:
Part a)

Part b)

Explanation:
Part a)
change in the energy due to decay of photon is given as

here we know that

now we have



Part b)
While electron return to its ground state it will emit a photon of energy 2/3rd of the total energy
so we have


now to find the wavelength we have



Newton's third law says:
"<span>For every action, there is an equal and opposite reaction. ".
So, the force that Tom does on the sister is equal to force the sister applies on Tom:
</span>

<span>where the label "t" means "on Tom", while the label "s" means "on the sister".
From Newton's second law, we also know
</span>

where m is the mass and a the acceleration. <span>so we can rewrite the first equation as
</span>

<span>And find Tom's acceleration:
</span>

<span>
</span>