Hello!
To solve this question, we need to use the
Avogadro's Number, which is a constant first discovered by
Amadeo Avogadro, an Italian scientist. He discovered that in a mole of a substance, there are
6,02*10²³ molecules. Using this relationship, we apply the following conversion factor:

So, 8,50 * 10²⁴ molecules of Na₂SO₃ represent
14,12 moles of Na₂SO₃
Have a nice day!
The trick for this problem is to understand atomic mass: the fact that different atoms have different masses. What we need to do is add up all the atomic masses of the compound and work out the ratio of mass of water to the mass of sodium carbonate. Atomic masses are often given for each atom in the periodic table, but you can look them up on google too.
You can do this by adding up individual atoms for each molecule, or you can shortcut and lookup the molar mass of the compound (i.e.the task already done for you).
The molar mass of water is 18.01g/mole so for 10 moles of water we have a mass of 180.1g.
The molar mass of sodium carbonate is 106g/mole (google).
So the total mass of the sodium carbonate decahydrate compound is 180.1+106 = 286.1g, of which water would make up 180.1g, so the percentage of water is is 180.1/286.1 = 0.629, so we can round this to 63%
:)
Answer:
Sodium arachidate; Sodium palmitate and Sodium palmitate
Explanation:
Triglycerides are esters of fatty acids with glycerol. In triglycerides, three fatty acid molecules are linked by ester bonds to each of the three carbon atoms in a glycerol molecule. The fatty acids may be same or different fatty acid molecules. Hydrolysis of triglycerides yields the three fatty acid molecules and glycerol.
Saponification is the process by which a base is used to catalyst the hydrolysis of the ester bonds in glycerides. The products of this base-catalyzed hydrolysis of triglycerides are the metallic salts of the three fatty acids and glycerol. The salts of the fatty acids are known as soaps.
For a triglyceride that has the fatty acid chains arachidic acid, palmitic acid and palmitic acid attached to the three backbone carbons glycerol, the saponification of the triglyceride with NaOH will yield the sodium salts or soaps of the three fatty acids as well as glycerol.
Arachidic acid will react with NaOH to yield sodium arachidate.
The two palmitic acid molecules will each react with NaOH to yield sodium palmitate.
Answer:
See explanation below for answers
Explanation:
We know that the balance is tared, so the innitial weight would be zero. Now, let's answer this by parts.
a) mass of displaced water.
In this case all we need to do is to substract the 0.70 with the 0.13 g. so:
mW = 0.70 - 0.13
mW = 0.57 g of water
b) Volume of water.
In this case, we have the density of water, so we use the formula for density and solve for volume:
d = m/V
V = m/d
Replacing:
Vw = 0.57/0.9982
Vw = 0.5710 mL of water
c) volume of the metal weight
In this case the volume would be the volume displaced of water, which would be 0.5710 mL
d) the mass of the metal weight.
In this case, it would be the mass when the metal weight hits the bottom which is 0.70 g
e) density.
using the above formula of density we calculate the density of the metal
d = 0.70 / 0.5710
d = 1.2259 g/mL
Answer:
Explanation:
Calcium chloride is a soluble salt which dissociates into calcium and chloride ions when dissolved in water.
CaCl₂(aq) ----> Ca²⁺(aq) + 2Cl⁻(aq)
Similarly, sodium oxalate when dissolved in water dissociates into sodium and oxalate ions.
Na₂CO₄(aq) ----> 2Na⁺(aq) + C₂O₄²⁻(aq)
However, in a double displacement reaction where the two solutions of the salts are mixed, the insoluble salt calcium oxalate is precipitated. The net ionic equation for the reaction is shown below:
Ca²⁺(aq) + C₂O₄²⁻(aq) ----> CaC₂O₄(s)