Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2
The solution for this problem would be:(10 - 500x) / (5 - x)
so start by doing:
x(5*50*2) - xV + 5V = 0.02(5*50*2)
500x - xV + 5V = 10
V(5 - x) = 10 - 500x
V = (10 - 500x) / (5 - x)
(V stands for the volume, but leaves us with the expression for x)
<span>You are given a submerged submarine accelerating upward at 0.325 m/s</span>² and the density of sea water is 1.025x10³ kg/m³. The submarine's average density at this time is 22 kg/m³.
A sound wave. Because in a vacuum there is no medium in a vacuum. And the only wave that requires a medium to travel through is a sound wave.
Assuming constant acceleration, the distance travelled in the first 4.5s is:
0.5*5.0*4.5 = 11.25m
The distance travelled in the next 4.5s is:
5.0*4.5 = 22.5m
The total distance travelled is:
11.25 + 22.5 = 33.75m