answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex17521 [72]
2 years ago
8

1 every 30,000 miles, __________. replace the brakes vacuum the interior service the automatic transmission (if your car has one

) inspect the trunk latch
Physics
2 answers:
frosja888 [35]2 years ago
3 0
It is recommended to change or service the automatic transmission fluid for every 30,000 miles. This is the ideal schedule for the average driver and will allow your transmission to run on well fluid continuously, which ultimately means a longer lasting and more efficient transmission. Even though there isn’t any damage in regular fluid changes, they recommend getting it changed every 30,000 to 60,000 miles for better outcomes on your transmission. But there are circumstances where a fluid change should be done sooner, and it will all rest on on your driving routines and other various factors. If you see to do some heavy towing, carrying, common stop-and-go driving, live in a very hot climate, or snow plowing, you should ponder getting your fluid changed sooner, perhaps every 15,000 miles 
HACTEHA [7]2 years ago
3 0

Answer:

For every 30,000 miles, it is recommended to change the service automation fluid.

Further details:

Automation fluid:

Transmission fluid turns as hydraulic fluid, oil, and coolant for your car, but that doesn’t mean it continues endlessly. Transmission fluid has a projection life too just like any other fluid in your car, and breaks down over time from heat, use, and contaminants. If left alone, it can start to cause unpredictable behavior with your transmission such as fluctuating issues, sliding, and overheating.  

When to change service automation fluid:

In the event that you make a few inquiries, you'll frequently get various sentiments on when to change transmission liquid. Some vehicle producers suggest getting a liquid change each 100,000 or even 150,000 miles, however that is very long when you consider it. The normal driver logs around 12,000 to 15,000 miles for each year, so if you somehow happened to get a liquid change each 100,000 miles, you'd wind up adjusting your transmission once every 6.5-8.5 years. That is 10-12.5 years on the off chance that you administration it each 150,000 miles. Who realizes what condition the liquid will resemble at that point!  

That is the reason it's prescribed to get a liquid change each 30,000 to 60,000 miles, or once every 2 to 4 years. This is the ideal calendar for the normal driver and will enable your transmission to keep running on sound liquid continually, which at last implies a more drawn out enduring and increasingly proficient transmission. In spite of the fact that there isn't any mischief in continuous liquid changes, we prescribe getting it changed each 30,000 to 60,000 miles for better outcomes, on your transmission just as your wallet.

Answer details:

Subject: Physics

Level: High school

Keywords:

• Automation fluid

• Transmission fluid

• When to change transmission fluid

Learn more to evaluate:

brainly.com/question/4997492#  

brainly.com/question/4722128#

brainly.com/question/4709921#

brainly.com/question/6765605#

You might be interested in
Find the net electric force that the two charges would exert on an electron placed at point on the xx-axis at xx = 0.200 mm. Exp
UkoKoshka [18]

Answer:

The question has some details missing, here is the complete question ; A -3.0 nC point charge is at the origin, and a second -5.0nC point charge is on the x-axis at x = 0.800 m. Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 m.

Explanation:

The application of coulonb's law is used to approach the question as shown in the attached file.

6 0
2 years ago
Show your work and resoning for the below requirement.
Leno4ka [110]

Answer:

This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap

Explanation:

We must work on this problem using the rotational equilibrium equations and then they compared the tension values that the cable supports.

Let's start with fixing a reference system on the hinge of the flag, we take as positive the anti-clockwise turn

 They indicate the weight of the pole W₁ = 120 lb and a length of L = 9 ft, the weight of the man W₂ = 150, we assume that the cable is at the tip of the pole

            - T_{y} L + W₂ L + W₁ L / 2 = 0

            T_{y} = W₂ + W₁ / 2

            T_{y} = 120 + 150/2

            T_{y} = 195 lb

we use trigonometry to find the cable tension

             sin 30 = T_{y} / T

             T = T_{y} / sin 30

             T = 195 / sin 30

             T = 390 lb

This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap

             T < 500 lb

4 0
2 years ago
A man stands on his balcony, 130 feet above the ground. He looks at the ground, with his sight line forming an angle of 70° with
jenyasd209 [6]

Answer:

d =  380 feet

Explanation:

Height of man = perpendicular= 130 feet

Angle of depression = ∅ = 70 °

distance to bus stop from man = hypotenuse = d = 130 sec∅

As sec ∅ = 1 / cos∅

so d = 130 sec∅    or d = 130 / cos∅

d = 130 / cos(70°)

d =  380 feet

8 0
2 years ago
Official (Closed) - Non Sensitive
Pavlova-9 [17]

Answer:

The minimum running time is 319.47 s.

Explanation:

First we find the distance covered and time taken by the train to reach its maximum speed:

We have:

Initial Speed = Vi = 0 m/s    (Since, train is initially at rest)

Final Speed = Vf = 29.17 m/s

Acceleration = a = 0.25 m/s²

Distance Covered to reach maximum speed = s₁

Time taken to reach maximum speed = t₁

Using 1st equation of motion:

Vf = Vi + at₁

t₁ = (Vf - Vi)/a

t₁ = (29.17 m/s - 0 m/s)/(0.25 m/s²)

t₁ = 116.68 s

Using 2nd equation of motion:

s₁ = (Vi)(t₁) + (0.5)(a)(t₁)²

s₁ = (0 m/s)(116.68 s) + (0.5)(0.25 m/s²)(116.68 s)²

s₁ = 1701.78 m = 1.7 km

Now, we shall calculate the end time and distance covered by train, when it comes to rest on next station.

We have:

Final Speed = Vf = 0 m/s    (Since, train is finally stops)

Initial Speed = Vi = 29.17 m/s     (The train must maintain max. speed for min time)

Deceleration = a = - 0.7 m/s²

Distance Covered to stop = s₂

Time taken to stop = t₂

Using 1st equation of motion:

Vf = Vi + at₂

t₂ = (Vf - Vi)/a

t₂ = (0 m/s - 29.17 m/s)/(- 0.7 m/s²)

t₂ = 41.67 s

Using 2nd equation of motion:

s₂ = (Vi)(t₂) + (0.5)(a)(t₂)²

s₂ = (29.17 m/s)(41.67 s) + (0.5)(- 0.7 m/s²)(41.67 s)²

s₂ = 607.78 m = 0.6 km

Since, we know that the rest of 7 km, the train must maintain the maximum speed to get to the next station in minimum time.

The remaining distance is:

s₃ = 7 km - s₂ - s₁

s₃ = 7 km - 0.6 km - 1.7 km

s₃ = 4.7 km

Now, for uniform speed we use the relation:

s₃ = vt₃

t₃ = s₃/v

t₃ = (4700 m)/(29.17 m/s)

t₃ = 161.12 s

So, the minimum running time will be:

t = t₁ + t₂ + t₃

t = 116.68 s + 41.67 s + 161.12 s

<u>t = 319.47 s</u>

5 0
2 years ago
Charge q1 is distance r from a positive point charge Q. Charge q2=q1/3 is distance 2r from Q. What is the ratio U1/U2 of their p
worty [1.4K]

We have that The ratio U1/U2 of their potential energies due to their interactions with Q is

  • U1/U2=6
  • U1/U2=6

From the question we are told that

Question 1

Charge q1 is distance r from a positive point charge Q.

Question 2

Charge q2=q1/3 is distance 2r from Q.

Charge q1 is distance s from the negative plate of a parallel-plate capacitor.

Charge q2=q1/3 is distance 2s from the negative plate.

Generally the equation for the potential energy  is mathematically given as

U=\frac{-k*qQ}{r}

Therefore

The Equations of U1 and U2 is

For U1

U1=\frac{-k*q_1Q}{r}

For U2

U2=\frac{-k*q_1Q}{3*2r}

Since

U is a function of q and  q2=q1/3

Therefore

U1/U2=6

For Question 2

For U1

U1=\frac{-k*q_1Q}{s}\\\\For U2\\\\U2=\frac{-k*q_1Q}{3*2r}

Therefore

U1/U2=6

For more information on this visit

brainly.com/question/23379286?referrer=searchResults

7 0
2 years ago
Other questions:
  • Iron(II) carbonate (FeCO3) has a solubility product constant of 3.13 x 10-11 . Calculate the molar solubility of FeCO3 in water
    11·1 answer
  • A pitcher exerts a force on a baseball that is 30 times the balls weight. How fast is the pitcher accelerating the ball?
    7·1 answer
  • At constant temperature, the volume of the container that a sample of nitrogen gas is in is doubled. As a result the pressure of
    5·1 answer
  • Two students push a heavy crate across the floor. John pushes with a force of 185 N due east and Joan pushes with a force of 165
    14·1 answer
  • Please help me with questions 1, 2 and 3. <br> i need a step by step explanation
    10·1 answer
  • A point charge with charge q1 is held stationary at the origin. A second point charge with charge q2 moves from the point (x1, 0
    6·1 answer
  • To eight significant figures, Avogadro's constant is 6.0221367×10^(23)mol−1. Which of the following choices demonstrates correct
    11·1 answer
  • If period of the pendulum in preceding sample problem were 24s how tall would the tower be ?
    8·2 answers
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • Three cars (car F, car G, and car H) are moving with the same velocity when the driver suddenly slams on the brakes, locking the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!