After some thinking I have come to the conclusion that the answer is C.
The balanced chemical reaction is written as:
4Al + 3O2 = 2Al2O3
To determine the mass of oxygen gas that would react with the given amount of aluminum metal, we use the initial amount and relate this amount to the ratio of the substances from the chemical reaction. We do as follows:
moles Al = 16.4 g ( 1 mol / 26.98 g ) = 0.61 mol Al
moles O2 = 0.61 mol Al ( 3 mol O2 / 4 mol Al ) = 0.46 mol O2
mass O2 = 0.46 mol O2 ( 32.0 g / mol ) = 14.59 g O2
Therefore, to completely react 16.4 grams of aluminum metal we need a minimum of 14.59 grams of oxygen gas.
Answer:
The mass density will be doubled
Explanation:
- Density is given by dividing the mass of a substance by its volume.
- An increase in mass causes an increase in density and vice versa, while a decrease in volume causes an increase in density and volume.
- Therefore, when the volume is halved, then the density will be doubled if the mass is kept constant.
- This has no effect on the number of moles as the mass is constant.
Molar mass CaCl₂ = 110.98 g/mol
Number of moles:
1 mole CaCl₂ ---------> 110.98 g
n mole CaCl2 ---------> 85.3 g
n = 85.3 / 110.98
n = 0.7686 moles of CaCl₂
Volume = ?
M = n / V
0.788 = 0.7686 / V
V = 0.7686 / 0.788
V = 0.975 L
hope this helps!
Answer :
(1) The number of valence electrons present in the compound is, 20
(2) The number of bonded electrons present in the compound is, 16
(3) The number of lone pair electrons present in the compound is, 4
(4) The number of single bonds present in the compound is, 8
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that carbon has '4' valence electrons, hydrogen has '1' valence electrons and oxygen has '6' valence electrons.
Therefore, the total number of valence electrons in
= 2(4) + 6(1) + 6 = 20
According to Lewis-dot structure, there are 16 number of bonding electrons and 4 number of non-bonding electrons or lone pair of electrons.
The Lewis-dot structure of
is shown below.