answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
photoshop1234 [79]
2 years ago
15

A student lifts a 50 pound (lb) ball 4 feet (ft) in 5 seconds (s). How many joules of work has the student completed?

Physics
1 answer:
Elis [28]2 years ago
5 0

           Work = (weight) x (distance)

  Work = (50 lb) x (1 kg / 2.20462 lb) x (9.81 newton/kg)

                           x (4 feet) x (1 meter / 3.28084 feet)

           = (50 x 9.81 x 4) / (2.20462 x 3.28084)  newton-meter

           =        271.3 joules .

We don't need to know how long the lift took, unless we
want to know how much power he was able to deliver.

                   Power = (work) / (time)    

                               = (271.3 joule) / (5 sec)  =  54.3 watts .
________________________________________

The easy way:

         Work = (weight) x (distance)

                
  = (50 pounds) x (4 feet)  =  200 foot-pounds

Look up (online) how many joules there are in 1 foot-pound.

There are  1.356 joules in 1 foot-pound.

So  200 foot-pounds = (200 x 1.356) = 271.2 joules.

That's the easy way.
You might be interested in
When Anna eats an apple, the sugars in that apple are broken down into the substance called glucose. Glucose is then burned in h
Alex777 [14]

Answer:

Chemical energy is converted to thermal energy and electrical energy.

Explanation:

The sugar present in the apple is broken down into Glucose. This is chemical energy stored in the apple which is broken down into energy which is utilized by body for everyday works. The chemical energy gets converted to thermal energy which warms the body and electrical energy due to which the heart beats.

7 0
2 years ago
Read 2 more answers
Calculate the amount of hcn that gives the lethal dose in a small laboratory room measuring 14 × 15 × 8.0ft. the density of air
vova2212 [387]
Since we are given the density and volume, then perhaps we can determine the amount in terms of the mass. All we have to do is find the volume in terms of cm³ so that it will cancel out with the cm³ in the density. The conversion is 1 ft = 30.48 cm. The solution is as follows:

V = (14 ft)(15 ft)(8 ft)(30.48 cm/1 ft)³ = 0.0593 cm³

The mass is equal to:
Mass = (0.00118g/cm³)(0.0593 cm³)
Mass = 7 grams of HCN
7 0
2 years ago
A physical change occurs when a material changes shape or size but the composition of the material does not change. True or Fals
Elden [556K]
It is true that a physical change occurs when a material changes shape or size, but the composition of the material does not change. The correct answer is True. 
6 0
2 years ago
At what time t is the turtle second time a distance of 10.0 cm from its starting point?
skad [1K]

Answer:

10 cm.

Explanation:

5 0
2 years ago
1. Two identical bowling balls of mass M and radius R roll side by side at speed v0 along a flat surface. Ball 1 encounters a ra
UNO [17]

Answer:

1/2

Explanation:

We need to make a couple of considerations but basically the problem is solved through the conservation of energy.  

I attached a diagram for the two surfaces and begin to make the necessary considerations.

Rough Surface,

We know that force is equal to,

F_r = mgsin\theta

F_r = \mu N

F_r = \mu mg cos\theta

Matching the two equation we have,

\mu N = \mu mg cos\theta

\mu = tan\theta

Applying energy conservation,

\frac{1}{2}mv^2_0+\frac{1}{2}I_w^2 = F_r*d+mgh_1

\frac{1}{2}mv^2_0+\frac{2}{5}mR^2\frac{V_0^2}{R^2} = F_r*d+mgh_1

\frac{1}{2}mv^2_0+\frac{mv_0^2}{5} = mgsin\theta \frac{h_1sin\theta}+mgh_1

\frac{v_0^2}{2}+\frac{v_0^2}{5} = gh_1+gh_1

h_1 = \frac{1}{2g}(\frac{v_0^2}{2}+\frac{v_0^2}{5})

Frictionless surface

\frac{1}{2}mv_0^2+\frac{1}{2}I\omega^2 = mgh_2

\frac{1}{2}m_v^2+\frac{1}{2}\frac{2}{5}mR^2\frac{v_0^2}{R^2} =mgh_2

\frac{v_0^2}{2}+\frac{v_0^2}{5} = gh_2

h_2 = \frac{1}{g}(\frac{V_0^2}{2}+\frac{v_0^2}{5})

Given the description we apply energy conservation taking into account the inertia of a sphere. Then the relation between h_1 and h_2 is given by

\frac{h_1}{h_2} = \frac{\frac{1}{2g}(\frac{v_0^2}{2}+\frac{v_0^2}{5})}{\frac{1}{g}(\frac{V_0^2}{2}+\frac{v_0^2}{5})}

\frac{h_1}{h_2} = \frac{1}{2}

8 0
2 years ago
Other questions:
  • What is the magnitude of the external force f necessary to hold the cart motionless at point c?
    14·1 answer
  • The mass of the Sun is 2 × 1030 kg, and the mass of Saturn is 5.68 × 1026 kg. The distance between Saturn and the Sun is 9.58 AU
    12·2 answers
  • Jane is a team leader. Match her leadership and teamwork skills to the appropriate descriptions.making her team understand the r
    6·1 answer
  • A car is driving at a velocity of 24 m/s. If its brakes can supply an acceleration of -5.0 m/s2, how much time will be required
    6·2 answers
  • A short current element dl⃗ = (0.500 mm)j^ carries a current of 5.40 A in the same direction as dl⃗ . Point P is located at r⃗ =
    15·1 answer
  • The furnace keeps houseAat 25◦C, while thefurnace in houseBkeeps it at 20◦C. Which house requires heat to be supplied by its fur
    7·1 answer
  • How much heat Q1 is transferred by 25.0 g of water onto the skin? To compare this to the result in the previous part, continue t
    13·1 answer
  • A herringbone or tire track pattern on a radiograph is a result of: _______.A. Insufficient vertical angulation B. Film bending
    5·1 answer
  • The diagram shows a lever. A bar sits on top of a brown triangle with a black weight at the left end and a finger pushing on the
    7·2 answers
  • The wad of clay of mass m = 0.36 kg is initially moving with a horizontal velocity v1 = 6.0 m/s when it strikes and sticks to th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!