answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krok68 [10]
2 years ago
6

A car is driving at a velocity of 24 m/s. If its brakes can supply an acceleration of -5.0 m/s2, how much time will be required

to bring the car to a stop?
Physics
2 answers:
Ainat [17]2 years ago
4 0

Answer:

Time, t = 4.8 seconds

Explanation:

Given that,

Initial velocity of the car, u = 24 m/s

Acceleration of the car, a=-5\ m/s^2

When the brakes are applied, v = 0

Let t is the time required by the car to stop it. It can be calculated using the formula of the acceleration as :

a=\dfrac{v-u}{t}

t=\dfrac{v-u}{a}

t=\dfrac{0-24}{-5}

t = 4.8 seconds

So, the time required to bring the car to a stop is 4.8 seconds. Hence, this is the required solution.

Lady_Fox [76]2 years ago
3 0
In equation form it reads: 0=24-5x
You can isolate the variable by subtracting 24 from both sides to get -24=5x.
Now all that has to be done is divide both sides by -5, which will result in -4.8=x
You might be interested in
A pitching machine is programmed to pitch baseballs horizontally at a speed of 87 mph . The machine is mounted on a truck and ai
Natalija [7]

Answer:

A) The speed of the pitching machine relative to the truck is 0 m/s

B) the speed of the pitched ball relative to the truck is 87mph

C) the speed of the pitching machine relative to him is 65mph

D) the speed of the pitched ball relative to him is 87mph - 65mph = 22mph

5 0
2 years ago
Determine the correlation between coronal mass ejections from the Sun to the accumulation of the rare and valuable isotope He3 t
Reil [10]

Most ejections originate from active regions on the Sun's surface, such as groupings of sunspots associated with frequent flares. These regions have closed magnetic field lines, in which the magnetic field strength is large enough to contain the plasma.

6 0
2 years ago
A block of size 20m x 10 mx 5 m exerts a force of 30N. Calculate the
Orlov [11]

Answer:

We know that force applied per unit area is called pressure.

Pressure = Force/ Area

When force is constant than pressure is inversely proportional to area.

1- Calculating the area of three face:

A1 = 20m x 10 m =200 Square meter

A2 = 10 mx 5 m = 50 Square meter

A3 = 20m x 5 m = 100 Square meter

Therefore A1 is maximum and A2 is minimum.

2- Calculate pressure:

P = F/ A1 = 30 / 200 = 0.15 Nm⁻²  ( minimum pressure)

P = F / A2 = 30 / 50 = 0.6 Nm⁻²   ( maximum pressure)

Hence greater the area less will be the pressure and vice versa.

3 0
2 years ago
Suppose you are drinking root beer from a conical paper cup. The cup has a diameter of 10 centimeters and a depth of 13 centimet
sveta [45]

Answer:

The level of the root beer is dropping at a rate of 0.08603 cm/s.

Explanation:

The volume of the cone is :

V=\frac {1}{3}\times \pi\times r^2\times h

Where, V is the volume of the cone

r is the radius of the cone

h is the height of the cone

The ratio of the radius and the height remains constant in overall the cone.

Thus, given that, r = d / 2 = 10 / 2 cm = 5 cm

h = 13 cm

r / h = 5 / 13

r = {5 / 13} h

V=\frac {1}{3}\times \frac {22}{7}\times ({{{\frac {5}{13}\times h}}})^2\times h

V=\frac {550}{3549}\times h^3

Also differentiating the expression of volume w.r.t. time as:

\frac {dV}{dt}=\frac {550}{3549}\times 3\times h^2\times \frac {dh}{dt}

Given: \frac {dV}{dt} = -4 cm³/sec (negative sign to show leaving)

h = 10 cm

So,

-4=\frac{550}{3549}\times 3\times {10}^2\times \frac {dh}{dt}

\frac{55000}{1183}\times \frac {dh}{dt}=-4

\frac {dh}{dt}=-0.08603\ cm/s

<u>The level of the root beer is dropping at a rate of 0.08603 cm/s.</u>

3 0
2 years ago
Identical guns fire identical bullets horizontally at the same speed from the same height above level planes, one on the Earth a
Natasha_Volkova [10]

Answer:

I. The horizontal distance traveled by the bullet is greater for the Moon.

II. The flight time is less for the bullet on the Earth.

Explanation:

Horizontal distance depends on the initial speed, height and gravity. Bullets have the same initial speed and are shot from the same height. In these conditions horizontal distance only depends on gravity, which is inversely proportional. Therefore, the less gravity the greater the horizontal distance. Gravity slows bullet and causes its impact on the ground. Since gravity is greater in Earth, the bullet hits faster on the earth.

3 0
2 years ago
Read 2 more answers
Other questions:
  • Which is the least likely cause of an engine to hunt and surge at top no-load speeds? A lean air/fuel mixture An incorrect spark
    12·2 answers
  • During a 72-ms interval, a change in the current in a primary coil occurs. This change leads to the appearance of a 6.0-mA curre
    5·1 answer
  • A neutral K meson at rest decays into two π mesons, which travel in opposite directions along the x axis with speeds of 0.828c.
    6·2 answers
  • Al llegar a detenerse, un automóvil deja marcas de derrape de 92m de largo sobre una autopista. Si se supone una desaceleración
    15·1 answer
  • The moon has a mass of 7.4 × 1022 kg and completes an orbit of radius 3.8×108 m about every 28 days. The Earth has a mass of 6 ×
    15·1 answer
  • A water wave traveling in a straight line on a lake is described by the equation:y(x,t)=(2.75cm)cos(0.410rad/cm x+6.20rad/s t)Wh
    11·1 answer
  • An electron is projected with an initial speed of 3.9 × 105 m/s directly toward a proton that is fixed in place. If the electron
    14·1 answer
  • Two golf carts have horns that emit sound with a frequency of 394 Hz. The golf carts are traveling toward one another, each trav
    7·1 answer
  • Write a hypothesis about the effect of the fan speed on the acceleration of the cart. Use the "if . . . then . . . because . . .
    13·2 answers
  • A point charge of -3.0 x 10-C is placed at the origin of coordinates. Find the clectric field at the point 13. X= 5.0 m on the x
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!