Answer is: <span> two samples have in common same amount of substance and same number of particles.
1) There are same amount of substance in both beakers:
n(Zn) = 1 mol.
n(ZnCl</span>₂) = 1 mol.
2) There are same number of particles (atoms, molecules, ions) in both beakers:
N(Zn) = n(Zn) · Na.
N(Zn) = 1 mol · 6.023·10²³ 1/mol = 6.023·10²³ atoms of zinc.
N(ZnCl₂) = n(ZnCl₂) · Na.
N(ZnCl₂) = 1 mol · 6.023·10²³ 1/mol = 6.023·10²³ molecules of zinc(II) chloride.
Na - Avogadro number.
Answer:
Mole fraction = 0,0166
Explanation:
Mole fraction is defined as mole of a compound per total moles of the mixture. In the solution, the solute is fructose and the solvent is water. That means you need to find moles of fructose and moles of water.
The molecular mass of fructose is 180,16g/mol and mass of water is 18,02 g/mol. Using these values:
91,7g fructose × (1mol / 180,16g) = <em>0,509 moles of fructose</em>
545g water × (1mol / 18,02g) = <em>30,24 moles of water</em>
Thus, mole fraction of fructose is:

<em>Mole fraction = 0,0166</em>
I hope it helps!
Answer:

Explanation:
HCl + NaOH ⟶ NaCl + H₂O
There are two energy flows in this reaction.
Heat of reaction + heat to warm water = 0
q₁ + q₂ = 0
q₁ + mCΔT = 0
Data:
m(HCl) = 50 g
m(NaOH) = 50 g
T₁ = 22 °C
T₂ = 28.87 °C
C = 4.18 J·°C⁻¹g⁻¹
Calculations:
m = 50 + 50 = 100 g
ΔT = 28.87 – 22 = 6.9 °C
q₂ = 100 × 4.18 × 6.9 = 2900 J
q₁ + 2900 = 0
q₁ = -2900 J
The negative sign tells us that the reaction produced heat.
The reaction produced
.
Displacement = √(3² + 4²)
Displacement = 5 meters north east
Velocity = displacement / time
Velocity = 5 / 35
Velocity = 0.14 m/s northeast
<u>Answer:</u> The correct answer is Option A.
<u>Explanation:</u>
Standard enthalpy of formation is the change in enthalpy of one mole of a substance present at the standard state that is 1 atm of pressure and 298 K of temperature. The substance is formed from its pure elements under the same conditions.
We are given a chemical compound having chemical formula 
This compound is formed by the combination of calcium, nitrogen and oxygen elements.
The chemical equation for the formation of
from the components in their standard states follows:

Hence, the correct answer is Option A.