answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitriy789 [7]
2 years ago
13

Standing on the roof of a (42.0+A) m tall building, you throw a ball straight up with an initial speed of (14.5+B) m/s. If the b

all misses the building on the way down, how long will it take from you threw the ball until it lands on the ground below? Give your answer in seconds and round the answer to three significant figures.
Physics
1 answer:
RSB [31]2 years ago
4 0
First, we must find the vertical distance traveled upwards by the ball due to the throw. For this, we will use the formula:

2as = v² - u²

Because the final velocity v is 0 in such cases

s = -u²/2a; because both u and a are downwards, the negative sign cancels

s = 14.5² / 2*9.81
s = 10.72 meters

Next, to find the time taken to reach the ground, we need the height above the ground. This is:
45 + 10.72 = 55.72 m

We will use the formula 
s = ut + 0.5at²

to find the time taken with the initial velocity u = 0.

55.72 = 0.5 * 9.81 * t²

t = 3.37 seconds
You might be interested in
There is an electromagnetic wave traveling in the -z direction in a standard right-handed coordinate system. What is the directi
wlad13 [49]

Answer: The direction of the electric field, E→, is pointed in the +y direction.

Explanation:

One can use the right hand rule to illustrate the direction of travel of an electromagnetic and thereby get the directions of the electric field, magnetic field and direction of travel of the wave.

The right hand rule states that the direction of the thumb indicate the direction of travel of the electromagnetic wave (<em>in this case the -z direction</em>) and the curling of the fingers point in the direction of the magnetic field  B→ (<em>in this case the +x direction</em>), therefore, the electric field direction E→ is in the direction of the fingers which would be pointed towards the +y direction.

6 0
2 years ago
A bicyclist of mass 68 kg rides in a circle at a speed of 3.9 m/s. If the radius of the circle is 6.5 m, what is the centripetal
ASHA 777 [7]
Data:
Centripetal Force = ? (Newton)
m (mass) = 68 Kg
s (speed) = 3.9 m/s
R (radius) = 6.5 m

Formula:
F_{centripetal\:force} =  \frac{m*s^2}{R}

Solving:
F_{centripetal\:force} = \frac{m*s^2}{R}
F_{centripetal\:force} = \frac{68*3.9^2}{6.5}
F_{centripetal\:force} = \frac{68*15.21}{6.5}
F_{centripetal\:force} = \frac{1034.28}{6.5}
\boxed{\boxed{F_{centripetal\:force} = 159.12\:N}}
Answer:
<span>B.159 N</span>
3 0
2 years ago
A charge Q is placed on the x axis at x = +4.0 m. A second charge q is located at the origin. If Q = +75 nC and q = −8.0 nC, wha
Stells [14]

Answer:

23.1 N/C

Explanation:

OP = 3 m , OQ = 4 m

PQ = \sqrt{4^{2}+3^{2}}=5 m

q = - 8 nC, Q = 75 nC

Electric field at P due to the charge Q is

E_{1}=\frac{KQ}{PQ^{2}}=\frac{9\times 10^{9}\times 75\times 10^{-9}}{25}=27 N/C

Electric field at P due to the charge q is

E_{2}=\frac{Kq}{PO^{2}}=\frac{9\times 10^{9}\times 8\times 10^{-9}}{9}=8 N/C

According to the diagram, tanθ = 3/4

Resolve the components of E1 along x axis and along y axis.

So, Electric field along X axis, Ex = - E1 Cos θ

Ex = - 27 x 4 / 5 = - 21.6 N/C

Electric field along y axis, Ey = E1 Sinθ - E2

Ey = 27 x 3 /5 - 8 = 8.2 N/C

The resultant electric field at P is given by

E=\sqrt{E_{x}^{2}+E_{y}^{2}}=\sqrt{(-21.6)^{2}+(8.2)^{2}}=23.1 N/C

3 0
2 years ago
. A spring has a length of 0.200 m when a 0.300-kg mass hangs from it, and a length of 0.750 m when a 1.95-kg mass hangs from it
kap26 [50]

Answer:

29.4 N/m

0.1  

Explanation:

a) From the restoring Force we know that :  

F_r = —k*x  

the gravitational force :  

F_g=mg  

Where:

F_r is the restoring force .

F_g is the gravitational force

g is the acceleration of gravity

k is the constant force  

xi , x2 are the displacement made by the two masses.

Givens:

<em>m1 = 1.29 kg</em>

<em>m2 = 0.3 kg  </em>

<em>x1   = -0.75 m  </em>

<em>x2 = -0.2 m </em>

<em>g   = 9.8 m/s^2  </em>

Plugging known information to get :

F_r =F_g

-k*x1 + k*x2=m1*g-m2*g

k=29.4 N/m

b) To get the unloaded length 1:  

l=x1-(F_1/k)

Givens:

m1 = 1.95kg , x1 = —0.75m  

Plugging known infromation to get :

l= x1 — (F_1/k)  

= 0.1  

 

3 0
2 years ago
Carbon dioxide is released when limestone is heated during the production of
Archy [21]

Answer:

Calcium

Explanation:

Because limestone is mainly calcium carbonate, CaCO3, which when heated breaks down to form calcium oxide and carbon dioxide.

6 0
2 years ago
Other questions:
  • A 15g bullet travelling at 100m/s strikes and is absorbed by a 75kg object. Find the speed at which the final object moves.
    5·1 answer
  • Raphael refers to a wave by noting its wavelength. lucinda refers to a wave by noting its frequency. which student is correct an
    15·1 answer
  • A point charge of 6.8 C moves at 6.5 × 104 m/s at an angle of 15° to a magnetic field that has a field strength of 1.4 T.
    5·2 answers
  • A 25.0-kg child plays on a swing having support ropes that are 2.20 m long. Her brother pulls her back until the ropes are 42.0°
    5·1 answer
  • Select True or False for the following statements about Heisenberg's Uncertainty Principle. True False It is not possible to mea
    5·1 answer
  • A scared elephant has a mass of 7000 kg. The mouse that frightened the elephant is 0.02 kg. The distance between the elephant an
    11·1 answer
  • Find an expression for the torsional constant k in terms of the moment of inertia I of the disk and the angular frequency ω of s
    10·1 answer
  • An oscilloscope shows a steady sinusoidal signal of 5 Volt peak to peak, which spans 5 cm in vertical direction on the screen. B
    8·1 answer
  • Use the ratio version of Kepler’s third law and the orbital information of Mars to determine Earth’s distance from the Sun. Mars
    5·2 answers
  • Charge q1 is distance r from a positive point charge Q. Charge q2=q1/3 is distance 2r from Q. What is the ratio U1/U2 of their p
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!