Answer:
A: 4 times as much
B: 200 N/m
C: 5000 N
D: 84,8 J
Explanation:
A.
In the first question, we have to caculate the constant of the spring with this equation:

Getting the k:
![k=\frac{m*g}{x} =\frac{0,2[kg]*9,81[\frac{m}{s^{2} } ]}{0,05[m]} =39,24[\frac{N}{m}]](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Bm%2Ag%7D%7Bx%7D%20%3D%5Cfrac%7B0%2C2%5Bkg%5D%2A9%2C81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D%7D%7B0%2C05%5Bm%5D%7D%20%3D39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D)
Then we can calculate how much the spring stretch whith the another mass of 0,2kg:
![x=\frac{m*g}{k} =\frac{0,4[kg]*9,81[\frac{m}{s^{2} } ]}{39,24[\frac{N}{m}]} =0,1[m]\\](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bm%2Ag%7D%7Bk%7D%20%3D%5Cfrac%7B0%2C4%5Bkg%5D%2A9%2C81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D%7D%7B39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%7D%20%3D0%2C1%5Bm%5D%5C%5C)
The energy of a spring:

For the first case:
![E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,05[m])^{2} =0,049 [J]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%7D%20%2A39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%2A%280%2C05%5Bm%5D%29%5E%7B2%7D%20%3D0%2C049%20%5BJ%5D)
For the second case:
![E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,1[m])^{2} =0,0196 [J]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%7D%20%2A39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%2A%280%2C1%5Bm%5D%29%5E%7B2%7D%20%3D0%2C0196%20%5BJ%5D)
If you take the relation E2/E1 = 4.
B.
We have the next facts:
x=0,005 m
E = 0,0025 J
Using the energy equation for a spring:
⇒![k=\frac{E*2}{x^{2} } =\frac{0,0025[J]*2}{(0,005[m])^{2} } =200[\frac{N}{m} ]](https://tex.z-dn.net/?f=k%3D%5Cfrac%7BE%2A2%7D%7Bx%5E%7B2%7D%20%7D%20%3D%5Cfrac%7B0%2C0025%5BJ%5D%2A2%7D%7B%280%2C005%5Bm%5D%29%5E%7B2%7D%20%7D%20%3D200%5B%5Cfrac%7BN%7D%7Bm%7D%20%5D)
C.
The potential energy of the diver will be equal to the kinetic energy in the moment befover hitting the watter.
![E=W*h=500[N]*10[m]=5000[J]](https://tex.z-dn.net/?f=E%3DW%2Ah%3D500%5BN%5D%2A10%5Bm%5D%3D5000%5BJ%5D)
Watch out the units in this case, the 500 N reffer to the weighs of the diver almost relative to the earth, thats equal to m*g.
D.
The work is equal to the force acting in the direction of the motion. so we have to do the diference beetwen angles to obtain the effective angle where the force is acting: 47-15=32 degree.
The force acting in the direction of the ramp will be the projection of the force in the ramp, equal to F*cos(32). The work will be:
W=F*d=F*cos(32)*d=10N*cos(32)*10m=84,8J
As it is given that Bulk modulus and density related to velocity of sound

by rearranging the equation we can say

now we need to find the SI unit of Bulk modulus here
we can find it by plug in the units of density and speed here

so SI unit will be

SO above is the SI unit of bulk Modulus
Answer:
18 W
Explanation:
Applying,
P = V²/R.................. Equation 1
Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs
Since: It is a series circuit,
Then,
R = R1+R2............. Equation 2
Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb
Given: R1 = R2 = 8 Ω
Substitute into equation 1
R = 8+8
R = 16 Ω
Also Given: V = 12 V
Substitute into equation 1
P = 12²/8
P = 144/8
P = 18 W
Answer:
Explanation:
Expression for escape velocity
ve = 
ve² R / 2 = GM
M is mass of the planet , R is radius of the planet .
At distance r >> R , potential energy of object
= 
Since the object is at rest at that point , kinetic energy will be zero .
Total mechanical energy =
+ 0 = 
Putting the value of GM = ve² R / 2
Total mechanical energy = ve² Rm / 2 r
This mechanical energy will be conserved while falling down on the earth due to law of conservation of mechanical energy . So at surface of the earth , total mechanical energy
= ve² Rm / 2 r
Change in velocity of larger moose: (1/3)v - v = -(2/3)v
<span>change in velocity of small moose: (1/3)v - (-v) = (4/3)v </span>
<span>- (change in velocity of larger moose)/(change in velocity of smaller moose) = 2
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>