<span>The key equation is going to come from Mr Planck: E=h \nu
Where h is Plancks constant; and ν is the frequency. This equation gives you the energy per photon at a given frequency. Alas, you're given wavelength, but that's easy enough to convert to frequency given the following equation:
c= lambda / nu
where c is the speed of light; λ (lambda) is the wavelength; and ν is again frequency. As soon as you know the energy of a photon with a wavelength of 550nm, you should know how many photons you would require to accumulate 10^-18J. Be careful with your units.</span>
Refer to the diagram shown below.
Neglect wind resistance, and use g = 9.8 m/s².
The pole vaulter falls with an initial vertical velocity of u = 0.
If the velocity upon hitting the pad is v, then
v² = 2*(9.8 m/s²)*(4.2 m) = 82.32 (m/s)²
v = 9.037 m/s
The pole vaulter comes to res after the pad compresses by 50 cm (or 0.5 m).
If the average acceleration (actually deceleration) is (a m/s²), then
0 = (9.037 m/s)² + 2*(a m/s²)*(0.5 m)
a = - 82.32/(2*0.5) = - 82 m/s²
Answer: - 82 m/s² (or a deceleration of 82 m/s²)
Answer:
a) W = 643.5 J, b) W = -427.4 J
Explanation:
a) Work is defined by
W = F. x = F x cos θ
in this case they ask us for the work done by the external force F = 165 N parallel to the ramp, therefore the angle between this force and the displacement is zero
W = F x
let's calculate
W = 165 3.9
W = 643.5 J
b) the work of the gravitational force, which is the weight of the body, in ramp problems the coordinate system is one axis parallel to the plane and the other perpendicular, let's use trigonometry to decompose the weight in these two axes
sin θ = Wₓ / W
cos θ = Wy / W
Wₓ = W sinθ = mg sin θ
Wy = W cos θ
the work carried out by each of these components is even Wₓ, it has to be antiparallel to the displacement, so the angle is zero
W = Wₓ x cos 180
W = - mg sin 34 x
let's calculate
W = -20 9.8 sin 34 3.9
W = -427.4 J
The work done by the component perpendicular to the plane is ero because the angle between the displacement and the weight component is 90º, so the cosine is zero.
I believe this ratio is 4:1 due to the inverse square law
<h2>The K.E of the charge is 1.02 x 10⁻¹⁷ J</h2>
Explanation:
When the charge of 2e is placed in between the plates .
The force applied on this charge by plates is = q E
here q is the magnitude of charge = 2 e = 2 x 1.6 x 10⁻¹⁹ C
and E is the magnitude of electric field intensity
The work done = Force x displacement
Thus W = q E x S
here S is displacement
Therefore W = 2 x 1.6 x 10⁻¹⁹ x 4 x 8
= 1.02 x 10⁻¹⁷ J
This work will be converted into the kinetic energy of charge .
Thus K.E = 1.02 x 10⁻¹⁷ J