answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
1 year ago
13

What is the entropy change of the system when 17.5 g of liquid benzene (c6h6) evaporates at the normal boiling point? the normal

boiling point of benzene is 80.1°c and δhvap is 30.7 kj/mol?
Chemistry
2 answers:
ivanzaharov [21]1 year ago
8 0

Answer : The entropy change of the system is, 19.5 J/K

Solution :

Formula used :

\Delta S=\frac{n\times \Delta H_{vap}}{T_b}

or,

\Delta S=\frac{\frac{w}{M}\times \Delta H_{vap}}{T_b}

where,

\Delta S = entropy change of the system = ?

\Delta H = enthalpy of vaporization = 30.7 kJ/mole

n = number of moles of benzene

w = mass of benzene = 17.5 g

M = molar mass of benzene = 78 g/mole

T_b = normal boiling point of benzene = 80.1^oC=273+80.1=353.1K

Now put all the given values in the above formula, we get the entropy change of the system.

\Delta S=\frac{\frac{17.5g}{78g/mole}\times (30.7KJ/mole)}{353.1K}=0.0195kJ/K=0.0195\times 1000=19.5J/K

Therefore, the entropy change of the system is, 19.5 J/K

Vika [28.1K]1 year ago
7 0
<span>1 mole of benzene (78g) requires 30.8 kJ/ of heat, so 11.5g will need ..... (it's a proportion calculation.) Temperature does not change at BPt and is not relevant if the temp of the liquid is already at the BPt ne definition of entropy is qrev/T, where qrev is the heat added in reversible operation (for complicated reasons pertaining to heat as a path function) and T is the temperature at which this is done. Phase changes are particularly good examples for calculations of changes in entropy, since temperature will not change will the bonds of a state are being broken. The calculations required boils down to: 1) finding the moles of benzene given from molar mass. 2) multiplying that moles by the heat of vaporization. 3)diving the heat energy required by the temperature of boiling point.</span>
You might be interested in
The information below describes a redox reaction.
Alchen [17]

Answer:

3

Explanation:

You have to mutiply the silver reaction by 3 in order to substract the electrons

3 0
1 year ago
Read 2 more answers
The Keq for the equilibrium below is 5.4 × 1013 at 480.0 °C. 2NO (g) + O2 (g) 2NO2 (g) What is the value of Keq at this temperat
kodGreya [7K]

<u>Answer:</u> The equilibrium constant for NO_2(g)\rightleftharpoons NO(g)+\frac{1}{2}O_2(g) equation is 1.36\times 10^{-7}

<u>Explanation:</u>

The given chemical equation follows:

2NO(g)+O_2(g)\rightleftharpoons 2NO_2(g)

The value of equilibrium constant for the above equation is K_{eq}=5.4\times 10^{13}

Calculating the equilibrium constant for the given equation:

NO_2(g)\rightleftharpoons NO(g)+\frac{1}{2}O_2(g)

The value of equilibrium constant for the above equation will be:

K'_{eq}=\frac{1}{\sqrt{K_{eq}}}\\\\K'_{eq}=\frac{1}{\sqrt{5.4\times 10^{13}}}\\\\K'_{eq}=1.36\times 10^{-7}

Hence, the equilibrium constant for NO_2(g)\rightleftharpoons NO(g)+\frac{1}{2}O_2(g) equation is 1.36\times 10^{-7}

5 0
1 year ago
Enter the correct answer for each unit conversion.
Luden [163]

Answer:

50 mm

4 ft

36 ft

250 cm

1 L

Explanation:

Centimeter to  millimeter:

1 cm is equal to 10 mm.

5cm× 10 mm/1 cm

50 mm

Inches to feet conversion:

1 foot is equal to 12 inches.

48 inch ×  1 feet /12 inch

4 feet

Yard to Feet conversion:

1 yard is equal to 3 feet.

12 yd × 3 ft / 1 yd

36 ft

Meter to centimeter:

One meter is equal to 100 cm.

2.5 m × 100 cm / 1m

250 cm

Milliliter to Liter:

One L is equal to 1000 mL.

1000 mL = 1 L

4 0
1 year ago
Read 2 more answers
If the actual yield of a reaction is 37.6 g while the theoretical yield is 112.8 g what is the percent yield
Zigmanuir [339]
<h2>Hello!</h2>

The answer is:

The percent yield of the reaction is 32.45%

<h2>Why?</h2>

To calculate the percent yield, we have to consider the theoretical yield and the actual yield. The theoretical yield as its name says is the yield expected, however, many times the difference between the theoretical yield and the actual yield is notorious.

We are given that:

ActualYield=37.6g\\TheoreticalYield=112.8g

Now, to calculate the percent yield, we need to divide the actual yield by the theoretical and multiply it by 100.

So, calculating we have:

PercentYield=\frac{ActualYield}{TheoreticalYield}*100\\\\PercentYield=\frac{37.6g}{112.8g}*100=0.3245*100=32.45(percent)

Hence, we have that the percent yield of the reaction is 32.45%.

Have a nice day!

8 0
2 years ago
Read 2 more answers
Determine the number of moles and mass requested for each reaction in Exercise 4.42.
suter [353]

Answer:

(a) 0.22 mol Cl₂ and 15.4g Cl₂

(b) 2.89.10⁻³ mol O₂ and 0.092g O₂

(c) 8 mol NaNO₃ and 680g NaNO₃

(d) 1,666 mol CO₂ and 73,333 g CO₂

(e) 18.87 CuCO₃ and 2,330g CuCO₃

Explanation:

In most stoichiometry problems there are a few steps that we always need to follow.

  1. Step 1: Write the balanced equation
  2. Step 2: Establish the theoretical relationship between the kind of information we have and the one we are looking for. Those relationships can be found in the balanced equation.
  3. Step 3: Apply conversion factor/s to the data provided in the task based on the relationships we found in the previous step.

(a)

Step 1:

2 Na + Cl₂ ⇄ 2 NaCl

Step 2:

In the balanced equation there are 2 moles of Na, thus 2 x 23g = 46g of Na. <u>46g of Na react with 1 mol of Cl₂</u>. Since the molar mass of Cl₂ is 71g/mol, then <u>46g of Na react with 71g of Cl₂</u>.

Step 3:

10.0gNa.\frac{1molCl_{2} }{46gNa} =0.22molCl_{2}

10.0gNa.\frac{71gCl_{2}}{46gNa} =15.4gCl_{2}

(b)

Step 1:

HgO ⇄ Hg + 0.5 O₂

Step 2:

<u>216.5g of HgO</u> form <u>0.5 moles of O₂</u>. <u>216.5g of HgO</u> form <u>16g of O₂</u>.

Step 3:

1.252gHgO.\frac{0.5molO_{2}}{216.5gHgO} =2.89.10^{-3} molO_{2}

1.252gHgO.\frac{16gO_{2}}{216.5gHgO} =0.092gO_{2}

(c)

Step 1:

NaNO₃ ⇄ NaNO₂ + 0.5 O₂

Step 2:

<u>16g of O₂</u> come from <u>1 mol of NaNO₃</u>. <u>16g of O₂</u> come from <u>85g of NaNO₃</u>.

Step 3:

128gO_{2}.\frac{1molNaNO_{3}}{16gO_{2}} =8mol NaNO_{3}

128gO_{2}.\frac{85gNaNO_{3}}{16gO_{2}} =680gNaNO_{3}

(d)

Step 1:

C + O₂ ⇄ CO₂

Step 2:

<u>12 g of C</u> form <u>1 mol of CO₂</u>. <u>12 g of C</u> form <u>44g of CO₂</u>.

Step 3:

20.0kgC.\frac{1,000gC}{1kgC} .\frac{1molCO_{2}}{12gC} =1,666molCO_{2

[tex]20.0kgC.\frac{1,000gC}{1kgC} .\frac{44gCO_{2}}{12gC} =73,333gCO_{2[/tex]

(e)

Step 1:

CuCO₃ ⇄ CuO + CO₂

Step 2:

<u>79.5g of CuO</u> come from <u>1 mol of CuCO₃</u>. <u>79.5g of CuO</u> come from <u>123.5g of CuCO₃</u>.

Step 3:

1.500kgCuO.\frac{1,000gCuO}{1kgCuO} .\frac{1mol CuCO_{3}}{79.5gCuO} =18.87molCuCO_{3}\\ 1.500kgCuO.\frac{1,000gCuO}{1kgCuO} .\frac{123.5g CuCO_{3}}{79.5gCuO} =2,330gCuCO_{3}

5 0
1 year ago
Other questions:
  • When a sample of a gas is heated in a sealed, rigid container from 200. K to 400. K, the pressure exerted by the gas is:
    9·1 answer
  • A 52.0 mL volume of 0.25 M HBr is titrated with 0.50 M KOH. Calculate the pH after addition of 26.0 mL of KOH at 25 ∘C.
    14·1 answer
  • A. what are substances called whose water solutions conduct electricity?
    12·1 answer
  • What is the pH of a 0.75 M HNO3 solution
    15·2 answers
  • Suppose you wish to make 0.879 l of 0.250 m silver nitrate by diluting a stock solution of 0.675 m silver nitrate. how many mill
    11·1 answer
  • Suppose that 2.5 mmol n2 (g) occupies 42 cm3 at 300 k and expands isothermally to 600 cm3. calculate δgm in kj/mol for the proc
    14·1 answer
  • A 6.1-kg solid sphere, made of metal whose density is 2600 kg/m3, is suspended by a cord. When the sphere is immersed in a liqui
    11·1 answer
  • 7. How many formula units are equal to a 0.25 g sample of Chromium (III) sulfate,
    13·1 answer
  • Which sweet tea would you expect to taste the sweetest? <br> Here is the clear picture
    7·2 answers
  • Joelle is a manager at a construction company, and she is interested in the chemistry behind the materials they use. She has beg
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!