Answer:
The solubility is 0.13 g/mL
Explanation:
Step 1: Data given
Temperature = 26.0 °C =299 K
Volume = 3.00 L
The mass of the crystals, after washing and drying = 0.36 kg = 360 grams
step 2: Calculate the solubility
3.00 L of water contains 360 grams of crystals
For 1.00L of water we'll have 360 / 3 = 130 grams of crystals
This means we have 130 grams of crystals in 1 L, this gives us a solubility of 130g/L
In 1000 mL we have 130 grams crystal
in 1 mL we have 130/1000 = 0.130 grams of crystals
The solubility is 0.13 g/mL
Answer:
a) First-order.
b) 0.013 min⁻¹
c) 53.3 min.
d) 0.0142M
Explanation:
Hello,
In this case, on the attached document, we can notice the corresponding plot for each possible order of reaction. Thus, we should remember that in zeroth-order we plot the concentration of the reactant (SO2Cl2 ) versus the time, in first-order the natural logarithm of the concentration of the reactant (SO2Cl2 ) versus the time and in second-order reactions the inverse of the concentration of the reactant (SO2Cl2 ) versus the time.
a) In such a way, we realize the best fit is exhibited by the first-order model which shows a straight line (R=1) which has a slope of -0.0013 and an intercept of -2.3025 (natural logarithm of 0.1 which corresponds to the initial concentration). Therefore, the reaction has a first-order kinetics.
b) Since the slope is -0.0013 (take two random values), the rate constant is 0.013 min⁻¹:

c) Half life for first-order kinetics is computed by:

d) Here, we compute the concentration via the integrated rate law once 1500 minutes have passed:

Best regards.
I believe that the answer is Oxygen. Hope this helps. :)
41.083 atm is the difference between the ideal pressure (as predicted by the ideal gas law) and the real pressure (as predicted by the van der Waals equation.
Explanation:
Data given for argon gas:
number of moles = 1 mole
volume = 0.5 L
Temperature = 19 degrees or 292.15 K
a= 1.345 (L2⋅atm)/mol2
b= 0.03219L/mol.
R = 0.0821
The real pressure equation given by Van der Waals equation:
P =( RT ÷ Vm-b) - a ÷ Vm^2
Putting the values in the equation:
P = (0.0821 x 292.15) ÷(0.5 - 0.03219) - 1.345÷ (0.5)^2
= 23.98÷0.4678 - 1.345 ÷0 .25
= 51.26 - 5.38
= 45.88 atm is the real pressure.
The pressure from the ideal gas law
PV =nRT
P =( 1 x 0.0821 x 292.15) ÷ 0.5
= 4.797 atm
the difference between the ideal pressure and real pressure is
Pressure by vander waal equation- Pressure by ideal gas law
45.88 - 4.797
= 41.083 atm.is the difference between the two.