This is an incomplete question, the table is attached below.
Answer : The correct ranking of the solution from most exothermic to most endothermic will be: A, B and C.
Explanation :
As we know that the intermolecular force of attraction play an important role in the interaction of solute-solute, solute-solvent and solvent solvent solution.
In the solution A, the solute-solute and solvent-solvent interactions are weak. So, their solute-solvent interaction will be strong. That means, the solution will be more exothermic.
In the solution C, the solute-solute and solvent-solvent interactions are strong. So, their solute-solvent interaction will be weak. That means, the solution will be more endothermic.
Thus, the correct ranking of the solution from most exothermic to most endothermic will be: A, B and C.
Answer:
100g/mol
Explanation:
Given parameters:
Mass of unknown gas = 2g
Volume of gas in flask = 500mL = 0.5dm³
Unknown:
Molar mass of gas = ?
Solution:
Since we know the gas is at STP;
1 mole of substance occupies 22.4dm³ of space at STP
Therefore,
0.5dm³ will have 0.02mole at STP
Now;
Number of moles =
Molar mass =
=
= 100g/mol
2 C2H2 + 5 02 > 4 CO2 + 2 H2O
Products - Reactants ( all units are kJ/mo1):
(4 x -393.5) + (2 x -241.82) - (2 x 226.77) - (5 x 0) = -2511.2 kJ/mo1
-2511.2 kJ/mo1 is for 2 moles of C2H2.The question asked for 1 mole of C2H2, so: -2511.2 / 2 = -1255.6 kJ/mo1
answer: -1255.6 kJ/mo1
Depression is freezing point is a colligative property. It is mathematically expressed as ΔTf = Kf X m
where Kf = <span>freezing point depression constant = 1.86°c kg /mol (for water)
m = molality of solution = 1.40 m
</span>∴ ΔTf = Kf X m = 1.86 X 1.40 = 2.604 oC
Now, for water freezing point = 0 oC
∴Freezing point of solution = -2.604 oC
Answer:
III, IV, and V
Explanation:
The complex [CO(NH3)6]3+ is a diamagnetic complex. It a low spin d^6 complex. Most d^6 complexes are low spin due to the higher crystal field stabilization energy of the low spin over the high spin arrangement.
d^6 metal complexes are known to be octahedral (a coordination number of 6 leads to octahedral geometry). Octahedral complexes does not have geometric isomers rather, may exist as the fac or her stereo isomers.