answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
2 years ago
13

A baseball m=.34kg is spun vertically on a massless string of length l=.52m. the string can only support a tension of tmax=9.9n

before it will break. what is the max possible speed of the ball at the top of the loop in m/s?

Physics
2 answers:
Katarina [22]2 years ago
8 0

The maximum possible speed of the ball at the top of the loop is 4.50 m/s

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration (m / s²)</em>

<em>v = final velocity (m / s)</em>

<em>u = initial velocity (m / s)</em>

<em>t = time taken (s)</em>

<em>d = distance (m)</em>

Centripetal Acceleration of circular motion could be calculated using following formula:

\large {\boxed {a_s = v^2 / R} }

<em>a = centripetal acceleration ( m/s² )</em>

<em>v = velocity ( m/s )</em>

<em>R = radius of circle ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

mass = m = 0.34 kg

length of string = R = 0.52 m

maximum tension = Tmax = 9.9 N

<u>Unknown:</u>

v = ?

<u>Solution:</u>

mg + T = ma

mg + T = m\frac{v^2}{R}

0.34 \times 9.8 + 9.9 = 0.34 \times \frac{v^2}{0.52}

13.232 = \frac{0.34}{0.52} \times v^2

v^2 = 20.2372

\large {\boxed {v \approx 4.50 ~ m/s} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Uniform Circular Motion : brainly.com/question/2562955
  • Trajectory Motion : brainly.com/question/8656387

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

larisa86 [58]2 years ago
7 0
<span>4.5 m/s This is an exercise in centripetal force. The formula is F = mv^2/r where m = mass v = velocity r = radius Now to add a little extra twist to the fun, we're swinging in a vertical plane so gravity comes into effect. At the bottom of the swing, the force experienced is the F above plus the acceleration due to gravity, and at the top of the swing, the force experienced is the F above minus the acceleration due to gravity. I will assume you're capable of changing the velocity of the ball quickly so you don't break the string at the bottom of the loop. Let's determine the force we get from gravity. 0.34 kg * 9.8 m/s^2 = 3.332 kg m/s^2 = 3.332 N Since we're getting some help from gravity, the force that will break the string is 9.9 N + 3.332 N = 13.232 N Plug known values into formula. F = mv^2/r 13.232 kg m/s^2 = 0.34 kg V^2 / 0.52 m 6.88064 kg m^2/s^2 = 0.34 kg V^2 20.23717647 m^2/s^2 = V^2 4.498574938 m/s = V Rounding to 2 significant figures gives 4.5 m/s The actual obtainable velocity is likely to be much lower. You may handle 13.232 N at the top of the swing where gravity is helping to keep you from breaking the string, but at the bottom of the swing, you can only handle 6.568 N where gravity is working against you, making the string easier to break.</span>
You might be interested in
A heavy stone of mass m is hung from the ceiling by a thin 8.25-g wire that is 65.0 cm long. When you gently pluck the upper end
Triss [41]

Answer: m= 35.6 kg

Explanation:

For finding the mass of the stone we have the formula

v= \sqrt{\frac{Tension}{Linear. Mass. density} }

Here, Tension= m*g = m*9.81

and linear mass density= \frac{8.25 g}{65 cm}

Linear mass density= \frac{8.25*10^-3}{65*10^-2}

Linear mass density= 0.0127 kg/m

Velocity= 2*\frac{l}{t}

Velocity= 2 * \frac{65*10^-2}{7.84}

Velocity= 165.8 m/s

So putting all these values in equation we get

v= \sqrt{\frac{Tension}{Linear. Mass. density} }

165.8= \sqrt{\frac{m*9.81}{0.0127} }

Solving we get

m= 35.58 kg

or m= 35.6 kg

3 0
2 years ago
A kangaroo jumps to a vertical height of 2.8 m. How long was it in the air before returning to earth
BaLLatris [955]
The answer would be 2.8m height on earth takes 
2.8=1/2*9.8*t^2 => <span>s = ut +1/2at^2 </span>
8 0
2 years ago
A small box of mass m1 is sitting on a board of mass m2 and length L (Figure 1) . The board rests on a frictionless horizontal s
chubhunter [2.5K]

Explanation:

Whole system will accelerate under the action of applied force. The box will experience the force against the friction and when this force exceeds then the box will move. so

Ff = μs×m1×g

m1×a = μs×m1×g

a = μs×g

The applied force is given by

F = (m1 + m2)×a so

F = μs×g×(m1+m2)

3 0
2 years ago
What is the resistance ofa wire made of a material with resistivity of 3.2 x 10^-8 Ω.m if its length is 2.5 m and its diameter i
Katarina [22]

R = 0.407Ω.

The resistance  R of a particular conductor is related to the resistivity ρ of the material by  the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of ​​the material.

To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.

We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4.  Then:

R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]

R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²

R = 0.407Ω

5 0
2 years ago
Consider four different oscillating systems, indexed using i = 1 , 2 , 3 , 4 . Each system consists of a block of mass mi moving
Rzqust [24]

Answer:

The order is 2>4>3>1 (TE)

Explanation:

Look up attached file

4 0
2 years ago
Other questions:
  • The inventor of the photographic process in which a photograph produced without a negative by exposing objects to light on light
    9·2 answers
  • In a game of egg-toss, you and a partner are throwing an egg back and forth trying not to break it. Given your knowledge of mome
    8·1 answer
  • A ray diagram is shown. Which statement best describes the diagram?
    6·1 answer
  • Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor rad
    5·2 answers
  • What is the average acceleration of a car that is initially at rest at a stoplight and then accelerates to 24 m/s in 9.4 s?
    15·2 answers
  • One beaker contains 100 mL of pure water and second beaker contains 100 mL of seawater. The two beakers are left side by side on
    12·2 answers
  • A proton is released such that it has an initial speed of 4.0 · 105 m/s from left to right across the page. A magnetic field of
    15·1 answer
  • Dua buah cermin datar X dan Y saling berhadapan dan membentuk sudut 60 derajat. Seberkas cahaya menuju X dengan sudut datang 60
    9·1 answer
  • Explain why the coin is able to float on top of the water in this glass
    16·2 answers
  • A toy doll and a toy robot are standing on a frictionless surface facing each other. The doll has a mass of 0.2 kg, and the robo
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!