answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yarga [219]
2 years ago
8

a bullet of mass m is fired into a block of mass m that is at rest. the block, with the bullet embedded, slides distance d acros

s a horizontal surface. the coefficient of kinetic friction is μk.
Physics
2 answers:
AVprozaik [17]2 years ago
7 0
Uk=2m*the normal force
the distance d is needed only if you were asked about work
Ilya [14]2 years ago
6 0

The expression for the bullet's speed vbullet is v=\sqrt{\frac{2\mu_k (m+M)gd}{m}} and  the speed of a 9.0 g bullet is v=16.8 m/s

<h3>Explanation: </h3>

A  bullet of mass m is fired into a block of mass m that is at rest. the block, with the bullet embedded, slides distance d across a horizontal surface. the coefficient of kinetic friction is μk.

The initial kinetic energy of the bullet is given by

K_i = \frac{1}{2}mv^2

where

m is the mass of the bullet  

v is the initial speed of the bullet

The expression for the bullet's speed vbullet is

F=\mu_k (m+M) g

where

\mu_k is the coefficient of kinetic friction

g is the acceleration of gravity

The work done by the force of friction is

W=-Fd = -\mu_k (m+M)g d

where d is the displacement of the block+bullet.

Because the final kinetic energy is zero (the bullet with the block comes at rest), we can write:

W=K_f - K_i = -K_i

And so

-\mu_k (m+M) g d = -\frac{1}{2}mv^2

By solving for v, the solution for the bullet speed:

-\mu_k (m+M) g d = -\frac{1}{2}mv^2\\v=\sqrt{\frac{2\mu_k (m+M)gd}{m}}

The speed of a 9.0 g bullet that, when fired into a 12 kg stationary wood block causes the block to slide 5.4 cm across a wood table. Assume that k=0.20.

We have:

the mass of the bullet, m = 9.0 g = 0.009 kg

the mass of the block, M = 12 kg

the distance covered by the block+bullet, d = 5.4 cm = 0.054 m

the coefficient of friction, \mu_k = 0.20

the acceleration of gravity, g = 9.8 m/s^2

By substituting, we got

v=\sqrt{\frac{2 (0.20) (0.009 kg+12 kg)(9.8 m/s^2)(0.054 m)}{0.009 kg}}=16.8 m/s

Learn more about   friction brainly.com/question/5884009

#LearnWithBrainly

You might be interested in
A giant wall clock with diameter d rests vertically on the floor. The minute hand sticks out from the face of the clock, and its
Katyanochek1 [597]

Answer:

d_{x}(t)=(D/2)cos(\frac{\pi}{30}*t)

Explanation:

We can try writing the equation of the horizontal component of the length of the minute hand in terms of distance and the angle, that depends of time in this particular case.

The x-component of the length of the minute hand is:

d_{x}(t)=dcos(\theta (t)) (1)

  • d is the length of the minute hand (d=D/2)
  • D is the diameter of the clock
  • t is the time (min)

Now, using the angular kinematic equations we can express the angle in term of angular velocity and time. As we know, the minute hand moves with a constant angular velocity, so we can use this equation:

\theta (t)=\omega *t (2)

Also we know, that the minute hand moves 90 degrees or π/2 rad in 15 min, so using the definition of angular velocity, we have:

\omega=\frac{\Delta \theta}{\Delta t}=\frac{\theta_{f}-\theta_{i}}{t_{f}-t{i}}=\frac{\pi/2-0}{15-0}=\frac{\pi}{30}

Now, let's put this value on (2)

\theta (t)=\frac{\pi}{30}*t

Finally the length x(t) of the shadow of the minute hand as a function of time t, will be:

d_{x}(t)=(D/2)cos(\frac{\pi}{30}*t)

I hope it helps you!

6 0
2 years ago
If the volume of an object is reported as 5.0 ft3 what is the volume in cubic meters
12345 [234]
The problem statement is simply asking us to convert units. We convert from units of ft^3 to units of m^3. To do this, we need a conversion factor. For this case, we use 1 m is equal to 3.28084 ft. We do as follows:

5.0 ft^3 ( 1 m / 3.28084 ft )^3 = 0.1416 m^3
3 0
2 years ago
A sphere of radius 5.00 cm carries charge 3.00 nC. Calculate the electric-field magnitude at a distance 4.00 cm from the center
OlgaM077 [116]

Answer:

a)   E = 8.63 10³ N /C,  E = 7.49 10³ N/C

b)   E= 0 N/C,  E = 7.49 10³ N/C  

Explanation:

a)  For this exercise we can use Gauss's law

         Ф = ∫ E. dA = q_{int} /ε₀

We must take a Gaussian surface in a spherical shape. In this way the line of the electric field and the radi of the sphere are parallel by which the scalar product is reduced to the algebraic product

The area of ​​a sphere is

        A = 4π r²

 

if we use the concept of density

        ρ = q_{int} / V

        q_{int} = ρ V

the volume of the sphere is

      V = 4/3 π r³

         

we substitute

         E 4π r² = ρ (4/3 π r³) /ε₀

         E = ρ r / 3ε₀

the density is

         ρ = Q / V

         V = 4/3 π a³

         E = Q 3 / (4π a³) r / 3ε₀

         k = 1 / 4π ε₀

         E = k Q r / a³

 

let's calculate

for r = 4.00cm = 0.04m

        E = 8.99 10⁹ 3.00 10⁻⁹ 0.04 / 0.05³

        E = 8.63 10³ N / c

for r = 6.00 cm

in this case the gaussine surface is outside the sphere, so all the charge is inside

         E (4π r²) = Q /ε₀

         E = k q / r²

let's calculate

         E = 8.99 10⁹ 3 10⁻⁹ / 0.06²

          E = 7.49 10³ N/C

b) We repeat in calculation for a conducting sphere.

For r = 4 cm

In this case, all the charge eta on the surface of the sphere, due to the mutual repulsion between the mobile charges, so since there is no charge inside the Gaussian surface, therefore the field is zero.

         E = 0

In the case of r = 0.06 m, in this case, all the load is inside the Gaussian surface, therefore the field is

        E = k q / r²

      E = 7.49 10³ N / C

6 0
2 years ago
A microprocessor scans the status of an output I/O device every 20 ms. This is accomplished by means of a timer alerting the pro
Lerok [7]

Answer:

0.0000045 s

Explanation:

f = Frequency = 8 MHz

Clock cycle is given by

\dfrac{1}{f}=\dfrac{1}{8\times 10^6}=1.25\times 10^{-7}\ s

Time taken for 12 clock cycles

12\times 1.25\times 10^{-7}=0.0000015\ s

Time taken per instruction is 0.0000015 s

In reading and displaying information it requires 3 processes

1 for reading, 1 for searching and 1 for displaying.

3\times 0.0000015=0.0000045\ s

Time taken is 0.0000045 s

6 0
2 years ago
Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
Sonbull [250]
The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.

A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?

The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.

I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.

B <<<<====== answer. 
5 0
2 years ago
Read 2 more answers
Other questions:
  • Hydrogen-3 has a half-life of 12.35 years. What mass of hydrogen-3 will remain form a 100.0 MG initial sample after 5.0 years? A
    11·1 answer
  • A 16-kg scooter is moving at a speed of 7 m/s. The scooter’s speed doubles. What is the scooter’s kinetic energy when its speed
    5·1 answer
  • A bird has a mass of 0.8 kg and flies at a speed of 11.2 m/s. How much kinetic energy does the bird have?
    5·2 answers
  • What is the most power in watts the ear can receive before the listener feels pain?
    10·1 answer
  • An airplane pilot wishes to fly directly westward. According to the weather bureau, a wind of 75.0 km/hour is blowing southward.
    15·1 answer
  • Waves are observed to splash upon the rocks at the shore every 6.0
    10·1 answer
  • A nonrelativistic electron is accelerated from rest through a potential difference. After acceleration the electron has a de Bro
    14·1 answer
  • Power is __________________. Power is __________________. the work done by a system the force required to push something the spe
    11·1 answer
  • Which shows the correct lens equation? The inverse of f equals the inverse of d Subscript o Baseline times the inverse of d Subs
    16·2 answers
  • Use the idea of density to explain why the dead creatures sink to the seabed​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!