Answer:
A. wool, silkworm, cocoon, and cellulose
Explanation:
I hope this helped!
Answer:
1. From water vapor to the dry ice;
2. The potential energy is higher before the water vapor condenses;
3. The thermal energy is higher in the 2.0 kg block.
Explanation:
1. The heat flows from the system with high temperature to the system with low temperature. The water vapor is at 298 K, and the dry ice is at 194.5 K.
2. The energy of the molecules is related to the temperature and the physics state. At the gas state, the molecules are more agitated, and the energy is higher than the liquid state. So, when the vapor condenses to a liquid, the energy decreases.
3. The thermal energy can be calculated by:
Q = m*c*ΔT
Where m is the mass, c is the specific heat, and ΔT the variation in the temperature. So, when the mass increase, thermal energy also increases.
When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536
Answer:
0.12693 mg/L
Explanation:
First we <u>calculate the concentration of compound X in the standard prior to dilution</u>:
- 10.751 mg / 100 mL = 0.10751 mg/mL
Then we <u>calculate the concentration of compound X in the standard after dilution</u>:
- 0.10751 mg/mL * 5 mL / 25 mL = 0.021502 mg/L
Now we calculate the<u> concentration of compound X in the sample</u>, using the <em>known concentration of standard and the given areas</em>:
- 2582 * 0.021502 mg/L ÷ 4374 = 0.012693 mg/L
Finally we <u>calculate the concentration of X in the sample prior to dilution</u>:
- 0.012693 mg/L * 50 mL / 5 mL = 0.12693 mg/L