Answer:
The molarity of the acid HX is 6.0 M.
Explanation:
We determine the amount of moles of KOH used to neutralize the acid:
=0.12 moles KOH
Then, we calculate the amount of moles of acid:
0.12 moles KOH×
=0.12 moles HX
The molarity of HX is:
=6.0 M
NH4I (aq) + KOH (aq) in chemical equation gives
NH4I (aq) + KOH (aq) = KI (aq) + H2O(l) + NH3 (l)
Ki is in aqueous state H2o is in liquid state while NH3 is in liquid state
from the equation above 1 mole of NH4I (aq) react with 1 mole of KOH(aq) to form 1mole of KI(aq) , 1mole of H2O(l) and 1 Mole of NH3(l)
Answer:
Amino acids, along with glucose, are reabsorbed in the glomerular system with a passive or active mechanism as the fluid travels through the entire renal tubular system and enters the circulation again.
Active mechanisms are those that require expenditure of energy, that is, expenditure of the energy currency, while the passive ones do not, they occur through spontaneous non-energy processes such as osmosis, the osmotic gradient and the difference in concentrations in different compartments.
Explanation:
Glomerular filtration is the regulator of the excretion of metabolites and toxic molecules or not necessary for our body. That is why if the amino acid values are high as well as those of glucose in urine, we will be facing a pathology.
If glucose is increased, it is because there is a glycemic peak in blood volume, hence possible diabetes.
And if the amino acids are increased, we could be facing an autoimmune or proteolytic pathology where a large amount of body proteins such as muscle proteins would be breaking down and releasing the amino acids that make it up, this phenomenon usually appears in those people who suffer from rhabdomyolysis in expenses very intense energy sources not appropriate.
On the other hand, glomerular filtration occurs in the kidney and is carried out by the nephron, which is the functional unit of the kidney, within it there is a specific tubular system in collection, absorption and reabsorption, added to the presence of Bowman's capsule.
There are 6.022*10^23 molecules in 1 mole of carbon
So how many will moles will be 7.87*20^7?
Let the required number of moles be ‘x’.
1 mole ———6.022*10^23
x moles———7.87*10^7
(Cross multiplication)
x=7.87*10^7/6.022*10^23
Therefore x=1.3*10^-16
Answer:
V = 552 mL or 0.552 L
Explanation:
First, we need to calculate the number of moles of H2 using the ideal gas equation which is:
PV = nRT
Solving for n:
n = PV / RT
Where:
P = Pressure
V = Volume
R = Gas constant (0.082 L atm / K mol)
T = Temperature in K
Let's convert first both pressure in atm, remember that 1 atm = 760 mmHg
P = 735 / 760 = 0.967 atm
Pwater = 21 / 760 = 0.028 atm
Finally temperature to Kelvin:
T = 23 + 273.15 = 296.15 K
Now, at first the hydrogen was collected by water displacement so pressure is:
P = 0.967 - 0.028 = 0.939 atm
Now the moles of hydrogen:
n = 0.939 * 0.568 / 0.082 * 296.15
n = 0.022 moles
Now that we have the moles, let's calculate the volume when the pressure is 735 mmHg
V = nRT/P
V = 0.022 * 0.082 * 296.15 / 0.967
V = 0.552 L or 552 mL
This is the volume that hydrogen occupies.